Department of Chemistry and Arctic Center for Sustainable Energy , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway.
Acc Chem Res. 2019 Jul 16;52(7):2003-2014. doi: 10.1021/acs.accounts.9b00115. Epub 2019 Jun 21.
Noninnocent ligands do not allow an unambiguous definition of the oxidation state of a coordinated atom. When coordinated, the ligands also cannot be adequately represented by a classic Lewis structure. A noninnocent system thus harbors oxidizing (holes) or reducing equivalents (electrons) that are delocalized over both the ligand and the coordinated atom. To a certain degree, that is true of all complexes, but the phenomenon is arguably most conspicuous in complexes involving ligands with extended π-systems. The electronic structures of such systems have often been mischaracterized, thereby muddying the chemical literature to the detriment of students and newcomers to the field. In recent years, we have investigated the electronic structures of several metallocorrole families, several of which have turned out to be noninnocent. Our goal here, however, is not to present a systematic account of the different classes of metallocorroles, but rather to focus on seven major tools (in a nod to A. G. Cairns-Smith's ) that led us to recognize noninnocent behavior and subsequently to characterize the phenomenon in depth. (1) : For a series of noninnocent -triarylcorrole derivatives with different substituents X, the Soret maxima are typically exquisitely sensitive to the nature of X, red-shifting with increasing electron-donating character of the group. No such substituent sensitivity is observed for the Soret maxima of innocent triarylcorrole derivatives. (2) : Spin-unrestricted density functional theory calculations permit a simple and quick visualization of ligand noninnocence in terms of the spin density profile. Even for an = 0 complex, the broken-symmetry method often affords a spin density profile that, its fictitious character notwithstanding, helps visualize the intramolecular spin couplings. (3) : In principle, these two techniques afford experimental probes of the electronic spin density. (4) . Ligand noninnocence in metallocorroles is often reflected in small but distinct skeletal bond length alternations in and around the bipyrrole part of the macrocycle. In addition, for Cu and some Ag corroles, ligand noninnocence manifests itself via a strong saddling of the macrocycle. (5) . Unsurprisingly, the aforementioned bond length alternations translate to structure-sensitive vibrational marker bands. (6) . Noninnocent metallocorroles exhibit characteristically high reduction potentials, but caution should be exercised in turning the logic around. A high reduction potential does not necessarily signify a noninnocent metallocorrole; certain high-valent metal centers also undergo metal-centered reduction at quite high potentials. (7) . By focusing on a given element, typically the central atom in a coordination complex, X-ray absorption near-edge spectroscopy (XANES) can provide uniquely detailed local information on oxidation and spin states, ligand field strength, and degree of centrosymmetry. For metallocorroles, some of the most clear-cut distinctions between innocent and noninnocent systems have come from the K-edge XANES of Mn and Fe corroles. For researchers faced with a new, potentially noninnocent system, the take-home message is to employ a good majority (i.e., at least four) of the above methods to arrive at a reliable conclusion vis-à-vis noninnocence.
非中性配体不允许对配位原子的氧化态进行明确的定义。当配位时,配体也不能用经典的路易斯结构来充分表示。因此,非中性体系中含有氧化(空穴)或还原(电子)的离域部分,这些离域部分既存在于配体上,也存在于配位原子上。在某种程度上,所有的配合物都是如此,但这种现象在涉及具有扩展π体系的配体的配合物中最为明显。这些体系的电子结构经常被错误描述,从而使化学文献变得混乱,这对学生和该领域的新手不利。近年来,我们研究了几种金属卟啉家族的电子结构,其中有几种被证明是非中性的。然而,我们在这里的目的不是系统地介绍不同类别的金属卟啉,而是集中讨论七个主要工具(向 A. G. Cairns-Smith 的致敬),这些工具帮助我们认识到非中性行为,并随后对其进行深入表征。
对于一系列具有不同取代基 X 的非中性 -三芳基卟啉衍生物,其 Soret 最大值通常对 X 的性质非常敏感,随着基团供电子特性的增加而红移。对于无辜的三芳基卟啉衍生物,没有观察到 Soret 最大值的这种取代基敏感性。
无限制密度泛函理论计算允许根据自旋密度分布图简单快速地可视化配体的非中性。即使对于 = 0 配合物,打破对称方法通常也会提供一个自旋密度分布图,尽管它是虚构的,但它有助于可视化分子内自旋耦合。
原则上,这两种技术都可以作为电子自旋密度的实验探针。
金属卟啉中的配体非中性通常反映在大环中吡咯部分的骨架键长交替小但明显。此外,对于 Cu 和一些 Ag 卟啉,配体非中性通过大环的强烈鞍形化表现出来。
毫不奇怪,上述键长交替转化为结构敏感的振动标记带。
非中性金属卟啉表现出特征性的高还原电势,但在将逻辑颠倒过来时应小心谨慎。高还原电势不一定表示非中性金属卟啉;某些高价金属中心也在相当高的电势下经历金属中心还原。
通过聚焦于给定的元素,通常是配位复合物的中心原子,X 射线吸收近边光谱(XANES)可以提供关于氧化和自旋态、配体场强度和对称中心程度的独特详细的局部信息。对于金属卟啉,一些最清晰的无辜和非中性系统之间的区别来自 Mn 和 Fe 卟啉的 K 边 XANES。对于面对新的、潜在的非中性系统的研究人员来说,重要的是至少使用上述方法中的四种方法来得出关于非中性的可靠结论。