Yang Hui, Chen Xing, Chen Wan-Ting, Wang Qing, Cuello Nelly Cantillo, Nafady Ayman, Al-Enizi Abdullah M, Waterhouse Geoffrey I N, Goenaga Gabriel A, Zawodzinski Thomas A, Kruger Paul E, Clements John E, Zhang Jian, Tian He, Telfer Shane G, Ma Shengqian
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 350002 Fuzhou , P.R. China.
Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States.
ACS Nano. 2019 Jul 23;13(7):8087-8098. doi: 10.1021/acsnano.9b02930. Epub 2019 Jun 24.
Atomically dispersed metal catalysts anchored on nitrogen-doped (N-doped) carbons demand attention due to their superior catalytic activity relative to that of metal nanoparticle catalysts in energy storage and conversion processes. Herein, we introduce a simple and versatile strategy for the synthesis of hollow N-doped carbon capsules that contain one or more atomically dispersed metals (denoted as H-M-N-C and H-M-N-C, respectively, where M = Fe, Co, or Ni). This method utilizes the pyrolysis of nanostructured core-shell precursors produced by coating a zeolitic imidazolate framework core with a metal-tannic acid (M-TA) coordination polymer shell (containing up to three different metal cations). Pyrolysis of these core-shell precursors affords hollow N-doped carbon capsules containing monometal sites (, Fe-N, CoN, or Ni-N) or multimetal sites (Fe/Co-N, Fe/Ni-N, Co/Ni-N, or Fe/Co/Ni-N). This inventory allowed exploration of the relationship between catalyst composition and electrochemical activity for the oxygen reduction reaction (ORR) in acidic solution. H-Fe-N-C, H-Co-N-C, H-FeCo-N-C, H-FeNi-N-C, and H-FeCoNi-N-C were particularly efficient ORR catalysts in acidic solution. Furthermore, the H-Fe-N-C catalyst exhibited outstanding initial performance when applied as a cathode material in a proton exchange membrane fuel cell. The synthetic methodology introduced here thus provides a convenient route for developing next-generation catalysts based on earth-abundant components.
锚定在氮掺杂(N掺杂)碳上的原子分散金属催化剂因其在储能和转换过程中相对于金属纳米颗粒催化剂具有优异的催化活性而备受关注。在此,我们介绍一种简单通用的策略来合成包含一种或多种原子分散金属的中空N掺杂碳胶囊(分别表示为H-M-N-C和H-M-N-C,其中M = Fe、Co或Ni)。该方法利用通过用金属-单宁酸(M-TA)配位聚合物壳(包含多达三种不同金属阳离子)包覆沸石咪唑酯骨架核而制备的纳米结构核壳前驱体的热解。这些核壳前驱体的热解得到含有单金属位点(Fe-N、Co-N或Ni-N)或多金属位点(Fe/Co-N、Fe/Ni-N、Co/Ni-N或Fe/Co/Ni-N)的中空N掺杂碳胶囊。这一成果有助于探索催化剂组成与酸性溶液中氧还原反应(ORR)电化学活性之间的关系。H-Fe-N-C、H-Co-N-C、H-FeCo-N-C、H-FeNi-N-C和H-FeCoNi-N-C在酸性溶液中是特别高效的ORR催化剂。此外,H-Fe-N-C催化剂在用作质子交换膜燃料电池的阴极材料时表现出出色的初始性能。因此,这里介绍的合成方法为开发基于储量丰富成分的下一代催化剂提供了一条便捷途径。