Keskin Sercan, Kunnas Peter, de Jonge Niels
INM - Leibniz Institute for New Materials , D-66123 Saarbrücken , Germany.
Department of Physics , Saarland University , D-66123 Saarbrücken , Germany.
Nano Lett. 2019 Jul 10;19(7):4608-4613. doi: 10.1021/acs.nanolett.9b01576. Epub 2019 Jun 19.
Liquid-phase electron microscopy (LPEM) is capable of imaging nanostructures and processes in a liquid environment. The spatial resolution achieved with LPEM critically depends on the thickness of the liquid layer surrounding the object of interest. An excessively thick liquid results in broadening of the electron beam and a high background signal that decreases the resolution and contrast of the object in an image. The liquid thickness in a standard liquid cell, consisting of two liquid enclosing membranes separated by spacers, is mainly defined by the deformation of the SiN membrane windows toward the vacuum side, and the effective thickness may differ from the spacer height. Here, we present a method involving a pressure controller setup to balance the pressure difference over the membrane windows, thus manipulating the shape profiles of the used silicon nitride membrane windows. Electron energy loss spectroscopy (EELS) measurements to determine the liquid thickness showed that it is possible to control the thickness precisely during an LPEM experiment by regulating the interior pressure of the liquid cell. We demonstrated atomic resolution on gold nanoparticles and the phase contrast using silica nanoparticles in liquid with controlled thickness.
液相电子显微镜(LPEM)能够对液体环境中的纳米结构和过程进行成像。LPEM所实现的空间分辨率关键取决于围绕感兴趣物体的液体层的厚度。过厚的液体会导致电子束展宽以及高背景信号,从而降低图像中物体的分辨率和对比度。在由间隔物隔开的两个液体包围膜组成的标准液体池中,液体厚度主要由氮化硅膜窗口向真空侧的变形所定义,有效厚度可能与间隔物高度不同。在此,我们提出一种涉及压力控制器设置的方法,以平衡膜窗口上的压力差,从而操控所用氮化硅膜窗口的形状轮廓。用于确定液体厚度的电子能量损失谱(EELS)测量表明,在LPEM实验期间通过调节液体池的内部压力可以精确控制厚度。我们在具有可控厚度的液体中对金纳米颗粒展示了原子分辨率,并使用二氧化硅纳米颗粒展示了相衬度。