Suppr超能文献

在透射电子显微镜中追踪液体中的单个吸附原子。

Tracking single adatoms in liquid in a transmission electron microscope.

作者信息

Clark Nick, Kelly Daniel J, Zhou Mingwei, Zou Yi-Chao, Myung Chang Woo, Hopkinson David G, Schran Christoph, Michaelides Angelos, Gorbachev Roman, Haigh Sarah J

机构信息

Department of Materials, University of Manchester, Manchester, UK.

National Graphene Institute, University of Manchester, Manchester, UK.

出版信息

Nature. 2022 Sep;609(7929):942-947. doi: 10.1038/s41586-022-05130-0. Epub 2022 Jul 27.

Abstract

Single atoms or ions on surfaces affect processes from nucleation to electrochemical reactions and heterogeneous catalysis. Transmission electron microscopy is a leading approach for visualizing single atoms on a variety of substrates. It conventionally requires high vacuum conditions, but has been developed for in situ imaging in liquid and gaseous environments with a combined spatial and temporal resolution that is unmatched by any other method-notwithstanding concerns about electron-beam effects on samples. When imaging in liquid using commercial technologies, electron scattering in the windows enclosing the sample and in the liquid generally limits the achievable resolution to a few nanometres. Graphene liquid cells, on the other hand, have enabled atomic-resolution imaging of metal nanoparticles in liquids. Here we show that a double graphene liquid cell, consisting of a central molybdenum disulfide monolayer separated by hexagonal boron nitride spacers from the two enclosing graphene windows, makes it possible to monitor, with atomic resolution, the dynamics of platinum adatoms on the monolayer in an aqueous salt solution. By imaging more than 70,000 single adatom adsorption sites, we compare the site preference and dynamic motion of the adatoms in both a fully hydrated and a vacuum state. We find a modified adsorption site distribution and higher diffusivities for the adatoms in the liquid phase compared with those in vacuum. This approach paves the way for in situ liquid-phase imaging of chemical processes with single-atom precision.

摘要

表面上的单个原子或离子会影响从成核到电化学反应以及多相催化等过程。透射电子显微镜是在各种基底上可视化单个原子的主要方法。传统上它需要高真空条件,但现已发展到可在液体和气体环境中进行原位成像,其空间和时间分辨率的组合是其他任何方法都无法比拟的——尽管存在电子束对样品影响的问题。使用商业技术在液体中成像时,包围样品的窗口以及液体中的电子散射通常会将可实现的分辨率限制在几纳米。另一方面,石墨烯液体池实现了对液体中金属纳米颗粒的原子分辨率成像。在此我们展示了一种双层石墨烯液体池,它由一个中心二硫化钼单层组成,通过六方氮化硼间隔层与两个包围的石墨烯窗口隔开,使得在水盐溶液中能够以原子分辨率监测单层上铂吸附原子的动力学。通过对超过70000个单个吸附原子吸附位点进行成像,我们比较了吸附原子在完全水合状态和真空状态下的位点偏好和动态运动。我们发现与真空中相比,液相中的吸附原子具有改变的吸附位点分布和更高的扩散率。这种方法为具有单原子精度的化学过程原位液相成像铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验