Suppr超能文献

全自动果蝇神经退行性变模型腿部追踪揭示了独特的保守运动特征。

Fully automated leg tracking of Drosophila neurodegeneration models reveals distinct conserved movement signatures.

机构信息

Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.

Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.

出版信息

PLoS Biol. 2019 Jun 27;17(6):e3000346. doi: 10.1371/journal.pbio.3000346. eCollection 2019 Jun.

Abstract

Some neurodegenerative diseases, like Parkinsons Disease (PD) and Spinocerebellar ataxia 3 (SCA3), are associated with distinct, altered gait and tremor movements that are reflective of the underlying disease etiology. Drosophila melanogaster models of neurodegeneration have illuminated our understanding of the molecular mechanisms of disease. However, it is unknown whether specific gait and tremor dysfunctions also occur in fly disease mutants. To answer this question, we developed a machine-learning image-analysis program, Feature Learning-based LImb segmentation and Tracking (FLLIT), that automatically tracks leg claw positions of freely moving flies recorded on high-speed video, producing a series of gait measurements. Notably, unlike other machine-learning methods, FLLIT generates its own training sets and does not require user-annotated images for learning. Using FLLIT, we carried out high-throughput and high-resolution analysis of gait and tremor features in Drosophila neurodegeneration mutants for the first time. We found that fly models of PD and SCA3 exhibited markedly different walking gait and tremor signatures, which recapitulated characteristics of the respective human diseases. Selective expression of mutant SCA3 in dopaminergic neurons led to a gait signature that more closely resembled those of PD flies. This suggests that the behavioral phenotype depends on the neurons affected rather than the specific nature of the mutation. Different mutations produced tremors in distinct leg pairs, indicating that different motor circuits were affected. Using this approach, fly models can be used to dissect the neurogenetic mechanisms that underlie movement disorders.

摘要

一些神经退行性疾病,如帕金森病 (PD) 和脊髓小脑共济失调 3 型 (SCA3),与独特的、改变的步态和震颤运动有关,这些运动反映了潜在的疾病病因。神经退行性疾病的果蝇模型阐明了我们对疾病分子机制的理解。然而,尚不清楚特定的步态和震颤功能障碍是否也会发生在果蝇疾病突变体中。为了回答这个问题,我们开发了一种基于机器学习的图像分析程序,即基于特征学习的肢体分割和跟踪 (FLLIT),它可以自动跟踪高速视频中自由移动的果蝇的腿部爪位置,生成一系列步态测量值。值得注意的是,与其他机器学习方法不同,FLLIT 生成自己的训练集,不需要用户注释的图像进行学习。使用 FLLIT,我们首次对果蝇神经退行性突变体的步态和震颤特征进行了高通量和高分辨率分析。我们发现,PD 和 SCA3 的果蝇模型表现出明显不同的行走步态和震颤特征,这些特征再现了各自人类疾病的特征。突变 SCA3 在多巴胺能神经元中的选择性表达导致更类似于 PD 果蝇的步态特征。这表明行为表型取决于受影响的神经元,而不是突变的特定性质。不同的突变在不同的腿部对中产生震颤,表明不同的运动回路受到了影响。使用这种方法,果蝇模型可以用于剖析导致运动障碍的神经遗传机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/708f/6619818/f32a00755fef/pbio.3000346.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验