Suppr超能文献

使用特征学习腿部分割与跟踪(FLLIT)对自由移动昆虫进行全自动腿部跟踪

Fully Automated Leg Tracking in Freely Moving Insects using Feature Learning Leg Segmentation and Tracking (FLLIT).

作者信息

Banerjee Animesh, Wu Shuang, Cheng Li, Aw Sherry Shiying

机构信息

Institute of Molecular and Cell Biology, Agency for Science, Technology and Research.

Bioinformatics Institute, Agency for Science, Technology and Research.

出版信息

J Vis Exp. 2020 Apr 23(158). doi: 10.3791/61012.

Abstract

The Drosophila model has been invaluable for the study of neurological function and for understanding the molecular and cellular mechanisms that underlie neurodegeneration. While fly techniques for the manipulation and study of neuronal subsets have grown increasingly sophisticated, the richness of the resultant behavioral phenotypes has not been captured at a similar detail. To be able to study subtle fly leg movements for comparison amongst mutants requires the ability to automatically measure and quantify high-speed and rapid leg movements. Hence, we developed a machine-learning algorithm for automated leg claw tracking in freely walking flies, Feature Learning-based Limb segmentation and Tracking (FLLIT). Unlike most deep learning methods, FLLIT is fully automated and generates its own training sets without a need for user annotation, using morphological parameters built into the learning algorithm. This article describes an in depth protocol for carrying out gait analysis using FLLIT. It details the procedures for camera setup, arena construction, video recording, leg segmentation and leg claw tracking. It also gives an overview of the data produced by FLLIT, which includes raw tracked body and leg positions in every video frame, 20 gait parameters, 5 plots and a tracked video. To demonstrate the use of FLLIT, we quantify relevant diseased gait parameters in a fly model of Spinocerebellar ataxia 3.

摘要

果蝇模型对于神经功能研究以及理解神经退行性变背后的分子和细胞机制具有不可估量的价值。虽然用于操纵和研究神经元亚群的果蝇技术日益复杂,但由此产生的行为表型的丰富性尚未得到类似详细程度的捕捉。为了能够研究果蝇腿部的细微运动以便在突变体之间进行比较,需要具备自动测量和量化高速及快速腿部运动的能力。因此,我们开发了一种用于在自由行走的果蝇中自动跟踪腿部爪子的机器学习算法,即基于特征学习的肢体分割与跟踪(FLLIT)。与大多数深度学习方法不同,FLLIT是完全自动化的,并且利用学习算法中内置的形态学参数生成自己的训练集,无需用户注释。本文描述了使用FLLIT进行步态分析的详细方案。它详细介绍了相机设置、实验场地构建、视频录制、腿部分割和腿部爪子跟踪的程序。它还概述了FLLIT产生的数据,包括每个视频帧中原始跟踪的身体和腿部位置、20个步态参数、5个图表和一个跟踪视频。为了演示FLLIT的使用,我们在脊髓小脑共济失调3型的果蝇模型中量化了相关的患病步态参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验