Wen Yuxin, AlHakeem Donna, Mandal Paras, Chakraborty Shantanu, Wu Yuan-Kang, Senjyu Tomonobu, Paudyal Sumit, Tseng Tzu-Liang
IEEE Trans Neural Netw Learn Syst. 2020 Apr;31(4):1134-1144. doi: 10.1109/TNNLS.2019.2918795. Epub 2019 Jun 24.
This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed of a data filtering technique based on wavelet transform (WT) and a soft computing model (SCM) based on radial basis function neural network (RBFNN) that is optimized by particle swarm optimization (PSO) algorithm. The point forecast capability of the proposed hybrid WT+RBFNN+PSO intelligent model is examined and compared with other hybrid models as well as individual SCM. The performance of the proposed bootstrap method in the form of probabilistic forecasts is compared with the QR method by generating different prediction intervals (PIs). Numerical tests using real data demonstrate that the point forecasts obtained from the proposed hybrid intelligent model can be effectively used to quantify PV power uncertainty. The performance of these two uncertainty quantification methods is assessed through reliability.
本文提出了两种基于自助法和分位数回归(QR)方法的概率方法,以估计与太阳能光伏(PV)功率点预测相关的不确定性。太阳能光伏输出功率预测是使用混合智能模型获得的,该模型由基于小波变换(WT)的数据过滤技术和基于径向基函数神经网络(RBFNN)的软计算模型(SCM)组成,后者通过粒子群优化(PSO)算法进行了优化。研究了所提出的混合WT+RBFNN+PSO智能模型的点预测能力,并与其他混合模型以及单个SCM进行了比较。通过生成不同的预测区间(PI),将所提出的自助法在概率预测形式下的性能与QR方法进行了比较。使用实际数据的数值测试表明,从所提出的混合智能模型获得的点预测可以有效地用于量化光伏功率不确定性。通过可靠性评估了这两种不确定性量化方法的性能。