Khramtsov Igor A, Fedyanin Dmitry Yu
Laboratory of Nanooptics and Plasmonics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.
Materials (Basel). 2019 Jun 19;12(12):1972. doi: 10.3390/ma12121972.
Electrically driven light sources are essential in a wide range of applications, from indication and display technologies to high-speed data communication and quantum information processing. Wide-bandgap semiconductors promise to advance solid-state lighting by delivering novel light sources. However, electrical pumping of these devices is still a challenging problem. Many wide-bandgap semiconductor materials, such as SiC, GaN, AlN, ZnS, and GaO, can be easily n-type doped, but their efficient p-type doping is extremely difficult. The lack of holes due to the high activation energy of acceptors greatly limits the performance and practical applicability of wide-bandgap semiconductor devices. Here, we study a novel effect which allows homojunction semiconductor devices, such as p-i-n diodes, to operate well above the limit imposed by doping of the p-type material. Using a rigorous numerical approach, we show that the density of injected holes can exceed the density of holes in the p-type injection layer by up to four orders of magnitude depending on the semiconductor material, dopant, and temperature, which gives the possibility to significantly overcome the doping problem. We present a clear physical explanation of this unexpected feature of wide-bandgap semiconductor p-i-n diodes and closely examine it in 4H-SiC, 3C-SiC, AlN, and ZnS structures. The predicted effect can be exploited to develop bright-light-emitting devices, especially electrically driven nonclassical light sources based on color centers in SiC, AlN, ZnO, and other wide-bandgap semiconductors.
电驱动光源在从指示和显示技术到高速数据通信及量子信息处理等广泛应用中至关重要。宽带隙半导体有望通过提供新型光源推动固态照明发展。然而,对这些器件进行电泵浦仍是一个具有挑战性的问题。许多宽带隙半导体材料,如碳化硅(SiC)、氮化镓(GaN)、氮化铝(AlN)、硫化锌(ZnS)和氧化镓(GaO),可以很容易地进行n型掺杂,但它们的高效p型掺杂极其困难。由于受主激活能高导致空穴缺乏,极大地限制了宽带隙半导体器件的性能和实际适用性。在此,我们研究了一种新颖的效应,它能使诸如p-i-n二极管之类的同质结半导体器件在远高于p型材料掺杂所施加限制的条件下工作。通过使用严格的数值方法,我们表明,根据半导体材料、掺杂剂和温度的不同,注入空穴的密度可比p型注入层中的空穴密度高出多达四个数量级,这为显著克服掺杂问题提供了可能性。我们对宽带隙半导体p-i-n二极管这一意外特性给出了清晰的物理解释,并在4H-SiC、3C-SiC、AlN和ZnS结构中对其进行了仔细研究。所预测的效应可用于开发明亮发光器件,特别是基于SiC、AlN、ZnO及其他宽带隙半导体中的色心的电驱动非经典光源。