Suppr超能文献

通过深度学习预测肽段的 LC-MS/MS 性质。

Prediction of LC-MS/MS Properties of Peptides from Sequence by Deep Learning.

机构信息

David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada; Program in Cell Biology and SPARC BioCentre, Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.

Program in Cell Biology and SPARC BioCentre, Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 686 Bay St, Toronto, ON, M5G 0A4, Canada.

出版信息

Mol Cell Proteomics. 2019 Oct;18(10):2099-2107. doi: 10.1074/mcp.TIR119.001412. Epub 2019 Jun 27.

Abstract

Deep learning models for prediction of three key LC-MS/MS properties from peptide sequences were developed. The LC-MS/MS properties or behaviors are indexed retention times (iRT), MS1 or survey scan charge state distributions, and sequence ion intensities of HCD spectra. A common core deep supervised learning architecture, bidirectional long-short term memory (LSTM) recurrent neural networks was used to construct the three prediction models. Two featurization schemes were proposed and demonstrated to allow for efficient encoding of modifications. The iRT and charge state distribution models were trained with on order of 10 data points each. An HCD sequence ion prediction model was trained with 2 × 10 experimental spectra. The iRT prediction model and HCD sequence ion prediction model provide improved accuracies over the start-of-the-art models available in literature. The MS1 charge state distribution prediction model offers excellent performance. The prediction models can be used to enhance peptide identification and quantification in data-dependent acquisition and data-independent acquisition (DIA) experiments as well as to assist MRM (multiple reaction monitoring) and PRM (parallel reaction monitoring) experiment design.

摘要

开发了用于从肽序列预测三个关键 LC-MS/MS 属性的深度学习模型。LC-MS/MS 属性或行为的指标保留时间 (iRT)、MS1 或总扫描电荷状态分布以及 HCD 谱的序列离子强度。使用通用核心深度监督学习架构双向长短时记忆 (LSTM) 递归神经网络来构建三个预测模型。提出并演示了两种特征化方案,以允许对修饰进行有效的编码。iRT 和电荷状态分布模型的训练数据点约为 10 个。HCD 序列离子预测模型的训练数据点约为 2×10 个实验谱。iRT 预测模型和 HCD 序列离子预测模型提供了比文献中可用的最新模型更高的准确性。MS1 电荷状态分布预测模型具有出色的性能。预测模型可用于增强数据依赖采集和数据独立采集 (DIA) 实验中的肽鉴定和定量,以及协助 MRM(多重反应监测)和 PRM(平行反应监测)实验设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/6773555/e771eef722f4/zjw0091960110008.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验