Suppr超能文献

基于组学数据和数据表示的深度学习预测模型

Omics Data and Data Representations for Deep Learning-Based Predictive Modeling.

机构信息

MLV Research Group, Department of Computer Science, International Hellenic University, 65404 Kavala, Greece.

出版信息

Int J Mol Sci. 2022 Oct 14;23(20):12272. doi: 10.3390/ijms232012272.

Abstract

Medical discoveries mainly depend on the capability to process and analyze biological datasets, which inundate the scientific community and are still expanding as the cost of next-generation sequencing technologies is decreasing. Deep learning (DL) is a viable method to exploit this massive data stream since it has advanced quickly with there being successive innovations. However, an obstacle to scientific progress emerges: the difficulty of applying DL to biology, and this because both fields are evolving at a breakneck pace, thus making it hard for an individual to occupy the front lines of both of them. This paper aims to bridge the gap and help computer scientists bring their valuable expertise into the life sciences. This work provides an overview of the most common types of biological data and data representations that are used to train DL models, with additional information on the models themselves and the various tasks that are being tackled. This is the essential information a DL expert with no background in biology needs in order to participate in DL-based research projects in biomedicine, biotechnology, and drug discovery. Alternatively, this study could be also useful to researchers in biology to understand and utilize the power of DL to gain better insights into and extract important information from the omics data.

摘要

医学发现主要依赖于处理和分析生物数据集的能力,这些数据集充斥着科学界,并且随着下一代测序技术成本的降低,还在不断扩大。深度学习(DL)是利用这一海量数据流的可行方法,因为它随着连续的创新而迅速发展。然而,科学进步出现了一个障碍:将 DL 应用于生物学的难度,这是因为这两个领域都在以惊人的速度发展,因此很难让一个人同时站在这两个领域的前沿。本文旨在弥合这一差距,帮助计算机科学家将其宝贵的专业知识引入生命科学领域。这项工作概述了最常见的生物数据类型和用于训练 DL 模型的数据表示,此外还介绍了模型本身以及正在解决的各种任务。这是没有生物学背景的 DL 专家参与基于 DL 的生物医学、生物技术和药物发现研究项目所需的基本信息。或者,这项研究对于生物学领域的研究人员也很有用,可以帮助他们理解和利用 DL 的强大功能,从组学数据中获得更深入的见解并提取重要信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5d2/9603455/b311f46fcad0/ijms-23-12272-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验