IQUIBICEN-CONICET, Intendente Guiraldes 2160, 1428EGA, Buenos Aires, Argentina.
Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
Extremophiles. 2019 Sep;23(5):587-597. doi: 10.1007/s00792-019-01110-x. Epub 2019 Jun 27.
Reactive oxygen species and nitrogen species (ROS and RNS), produced in a wide range of physiological process even under low oxygen availability, are among the main stressors found in the environment. Strategies developed to combat them constitute key features in bacterial adaptability and survival. Pseudomonas extremaustralis is a metabolic versatile and stress resistant Antarctic bacterium, able to grow under different oxygen conditions. The present work explores the effect of oxidative stress under low oxygen conditions in P. extremaustralis, by combining RNA deep sequencing analysis and physiological studies. Cells grown under microaerobiosis exhibited more oxidative damage in macromolecules and lower survival rates than under aerobiosis. RNA-seq analysis showed an up-regulation of genes related with oxidative stress response, flagella, chemotaxis and biofilm formation while chaperones and cytochromes were down-regulated. Microaerobic cultures exposed to HO also displayed a hyper-flagellated phenotype coupled with a high motility behavior. Moreover, cells that were subjected to oxidative stress presented increased biofilm formation. Altogether, our results suggest that a higher motile behavior and augmented capacity to form biofilm structures could work in addition to well-known antioxidant enzymes and non-enzymatic ROS scavenging mechanisms to cope with oxidative stress at low oxygen tensions.
活性氧(ROS)和活性氮(RNS)在广泛的生理过程中产生,即使在低氧供应的情况下也是如此,它们是环境中主要的应激源之一。为应对这些应激源而开发的策略是细菌适应性和生存能力的关键特征。南极极端假单胞菌是一种代谢多样且能耐受应激的南极细菌,能够在不同的氧气条件下生长。本研究通过结合 RNA 深度测序分析和生理研究,探讨了低氧条件下氧化应激对 P. extremasutalis 的影响。在微氧条件下生长的细胞表现出比好氧条件下更大的大分子氧化损伤和更低的存活率。RNA-seq 分析显示,与氧化应激反应、鞭毛、趋化性和生物膜形成相关的基因上调,而伴侣蛋白和细胞色素下调。暴露于 HO 的微氧培养物也表现出超鞭毛表型和高迁移行为。此外,经历氧化应激的细胞表现出增强的生物膜形成。总之,我们的研究结果表明,更高的运动行为和增强的生物膜结构形成能力,除了众所周知的抗氧化酶和非酶 ROS 清除机制外,还可以在低氧张力下应对氧化应激。