Suppr超能文献

抗活性氮物质(RNS)的微生物:适应性及医学意义

Reactive nitrogen species (RNS)-resistant microbes: adaptation and medical implications.

作者信息

Tharmalingam Sujeenthar, Alhasawi Azhar, Appanna Varun P, Lemire Joe, Appanna Vasu D

机构信息

.

出版信息

Biol Chem. 2017 Oct 26;398(11):1193-1208. doi: 10.1515/hsz-2017-0152.

Abstract

Nitrosative stress results from an increase in reactive nitrogen species (RNS) within the cell. Though the RNS - nitric oxide (·NO) and peroxynitrite (ONOO-) - play pivotal physiological roles, at elevated concentrations, these moieties can be poisonous to both prokaryotic and eukaryotic cells alike due to their capacity to disrupt a variety of essential biological processes. Numerous microbes are known to adapt to nitrosative stress by elaborating intricate strategies aimed at neutralizing RNS. In this review, we will discuss both the enzymatic systems dedicated to the elimination of RNS as well as the metabolic networks that are tailored to generate RNS-detoxifying metabolites - α-keto-acids. The latter has been demonstrated to nullify RNS via non-enzymatic decarboxylation resulting in the production of a carboxylic acid, many of which are potent signaling molecules. Furthermore, as aerobic energy production is severely impeded during nitrosative stress, alternative ATP-generating modules will be explored. To that end, a holistic understanding of the molecular adaptation to nitrosative stress, reinforces the notion that neutralization of toxicants necessitates significant metabolic reconfiguration to facilitate cell survival. As the alarming rise in antimicrobial resistant pathogens continues unabated, this review will also discuss the potential for developing therapies that target the alternative ATP-generating machinery of bacteria.

摘要

亚硝化应激源于细胞内活性氮物质(RNS)的增加。尽管RNS——一氧化氮(·NO)和过氧亚硝酸根(ONOO-)——发挥着关键的生理作用,但在浓度升高时,这些部分由于能够破坏各种重要的生物过程,对原核细胞和真核细胞都可能有毒。已知许多微生物通过制定旨在中和RNS的复杂策略来适应亚硝化应激。在这篇综述中,我们将讨论专门用于消除RNS的酶系统以及为生成RNS解毒代谢物——α-酮酸而定制的代谢网络。后者已被证明可通过非酶脱羧作用消除RNS,从而产生羧酸,其中许多是有效的信号分子。此外,由于在亚硝化应激期间有氧能量产生严重受阻,将探索替代的ATP生成模块。为此,对分子适应亚硝化应激的全面理解强化了这样一种观念,即中和毒物需要进行重大的代谢重新配置以促进细胞存活。随着抗菌耐药病原体的惊人增加持续不减,本综述还将讨论开发针对细菌替代ATP生成机制的疗法的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验