Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases.
Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).
Cell Struct Funct. 2024 Aug 30;49(2):57-65. doi: 10.1247/csf.24036. Epub 2024 Jul 31.
Although quantitative analysis of biological images demands precise extraction of specific organelles or cells, it remains challenging in broad-field grayscale images, where traditional thresholding methods have been hampered due to complex image features. Nevertheless, rapidly growing artificial intelligence technology is overcoming obstacles. We previously reported the fine-tuned apodized phase-contrast microscopy system to capture high-resolution, label-free images of organelle dynamics in unstained living cells (Shimasaki, K. et al. (2024). Cell Struct. Funct., 49: 21-29). We here showed machine learning-based segmentation models for subcellular targeted objects in phase-contrast images using fluorescent markers as origins of ground truth masks. This method enables accurate segmentation of organelles in high-resolution phase-contrast images, providing a practical framework for studying cellular dynamics in unstained living cells.Key words: label-free imaging, organelle dynamics, apodized phase contrast, deep learning-based segmentation.
虽然生物图像的定量分析需要精确提取特定的细胞器或细胞,但在宽场灰度图像中,由于复杂的图像特征,传统的阈值方法仍然具有挑战性。然而,快速发展的人工智能技术正在克服这些障碍。我们之前报道了经过微调的消光位相差显微镜系统,用于捕获未染色活细胞中细胞器动力学的高分辨率、无标记图像(Shimasaki, K. 等人,2024 年。细胞结构与功能,49:21-29)。我们在这里展示了基于机器学习的相位对比度图像中荧光标记物作为真实掩模起源的亚细胞靶向对象的分割模型。该方法能够对高分辨率相差图像中的细胞器进行精确分割,为研究未染色活细胞中的细胞动力学提供了实用框架。
无标记成像、细胞器动力学、消光位相差、基于深度学习的分割。