眶额皮质回路控制多种强化学习过程。

Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes.

机构信息

Department of Psychiatry, Yale University, New Haven, CT 06515, USA.

Department of Psychiatry, Yale University, New Haven, CT 06515, USA.

出版信息

Neuron. 2019 Aug 21;103(4):734-746.e3. doi: 10.1016/j.neuron.2019.05.042. Epub 2019 Jun 25.

Abstract

Adaptive decision making in dynamic environments requires multiple reinforcement-learning steps that may be implemented by dissociable neural circuits. Here, we used a novel directionally specific viral ablation approach to investigate the function of several anatomically defined orbitofrontal cortex (OFC) circuits during adaptive, flexible decision making in rats trained on a probabilistic reversal learning task. Ablation of OFC neurons projecting to the nucleus accumbens selectively disrupted performance following a reversal, by disrupting the use of negative outcomes to guide subsequent choices. Ablation of amygdala neurons projecting to the OFC also impaired reversal performance, but due to disruptions in the use of positive outcomes to guide subsequent choices. Ablation of OFC neurons projecting to the amygdala, by contrast, enhanced reversal performance by destabilizing action values. Our data are inconsistent with a unitary function of the OFC in decision making. Rather, distinct OFC-amygdala-striatal circuits mediate distinct components of the action-value updating and maintenance necessary for decision making.

摘要

在动态环境中进行适应性决策需要多个强化学习步骤,这些步骤可能由可分离的神经回路来实现。在这里,我们使用一种新颖的定向特异性病毒消融方法,来研究在概率反转学习任务中接受训练的大鼠的几个解剖定义的眶额皮层(OFC)回路在适应性、灵活决策中的功能。向伏隔核投射的 OFC 神经元的消融选择性地破坏了反转后的表现,因为这破坏了利用负面结果来指导后续选择的能力。向 OFC 投射的杏仁核神经元的消融也损害了反转表现,但这是由于破坏了利用正结果来指导后续选择的能力。相比之下,向杏仁核投射的 OFC 神经元的消融通过破坏动作值的稳定性,增强了反转表现。我们的数据与 OFC 在决策中的单一功能不一致。相反,不同的 OFC-杏仁核-纹状体回路介导了决策所需的动作值更新和维持的不同成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索