Suppr超能文献

眶额皮质回路控制多种强化学习过程。

Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes.

机构信息

Department of Psychiatry, Yale University, New Haven, CT 06515, USA.

Department of Psychiatry, Yale University, New Haven, CT 06515, USA.

出版信息

Neuron. 2019 Aug 21;103(4):734-746.e3. doi: 10.1016/j.neuron.2019.05.042. Epub 2019 Jun 25.

Abstract

Adaptive decision making in dynamic environments requires multiple reinforcement-learning steps that may be implemented by dissociable neural circuits. Here, we used a novel directionally specific viral ablation approach to investigate the function of several anatomically defined orbitofrontal cortex (OFC) circuits during adaptive, flexible decision making in rats trained on a probabilistic reversal learning task. Ablation of OFC neurons projecting to the nucleus accumbens selectively disrupted performance following a reversal, by disrupting the use of negative outcomes to guide subsequent choices. Ablation of amygdala neurons projecting to the OFC also impaired reversal performance, but due to disruptions in the use of positive outcomes to guide subsequent choices. Ablation of OFC neurons projecting to the amygdala, by contrast, enhanced reversal performance by destabilizing action values. Our data are inconsistent with a unitary function of the OFC in decision making. Rather, distinct OFC-amygdala-striatal circuits mediate distinct components of the action-value updating and maintenance necessary for decision making.

摘要

在动态环境中进行适应性决策需要多个强化学习步骤,这些步骤可能由可分离的神经回路来实现。在这里,我们使用一种新颖的定向特异性病毒消融方法,来研究在概率反转学习任务中接受训练的大鼠的几个解剖定义的眶额皮层(OFC)回路在适应性、灵活决策中的功能。向伏隔核投射的 OFC 神经元的消融选择性地破坏了反转后的表现,因为这破坏了利用负面结果来指导后续选择的能力。向 OFC 投射的杏仁核神经元的消融也损害了反转表现,但这是由于破坏了利用正结果来指导后续选择的能力。相比之下,向杏仁核投射的 OFC 神经元的消融通过破坏动作值的稳定性,增强了反转表现。我们的数据与 OFC 在决策中的单一功能不一致。相反,不同的 OFC-杏仁核-纹状体回路介导了决策所需的动作值更新和维持的不同成分。

相似文献

1
Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes.
Neuron. 2019 Aug 21;103(4):734-746.e3. doi: 10.1016/j.neuron.2019.05.042. Epub 2019 Jun 25.
2
The Role of Orbitofrontal-Amygdala Interactions in Updating Action-Outcome Valuations in Macaques.
J Neurosci. 2017 Mar 1;37(9):2463-2470. doi: 10.1523/JNEUROSCI.1839-16.2017. Epub 2017 Feb 1.
4
Different time courses for learning-related changes in amygdala and orbitofrontal cortex.
Neuron. 2011 Sep 22;71(6):1127-40. doi: 10.1016/j.neuron.2011.07.016. Epub 2011 Sep 21.
5
Basolateral amygdala lesions facilitate reward choices after negative feedback in rats.
J Neurosci. 2013 Feb 27;33(9):4105-9. doi: 10.1523/JNEUROSCI.4942-12.2013.
6
Meta-reinforcement learning via orbitofrontal cortex.
Nat Neurosci. 2023 Dec;26(12):2182-2191. doi: 10.1038/s41593-023-01485-3. Epub 2023 Nov 13.
7
Contrasting Roles for Orbitofrontal Cortex and Amygdala in Credit Assignment and Learning in Macaques.
Neuron. 2015 Sep 2;87(5):1106-18. doi: 10.1016/j.neuron.2015.08.018.
8
Primate Orbitofrontal Cortex Codes Information Relevant for Managing Explore-Exploit Tradeoffs.
J Neurosci. 2020 Mar 18;40(12):2553-2561. doi: 10.1523/JNEUROSCI.2355-19.2020. Epub 2020 Feb 14.
9
Orbitofrontal cortex reflects changes in response-outcome contingencies during probabilistic reversal learning.
Neuroscience. 2017 Mar 14;345:27-37. doi: 10.1016/j.neuroscience.2016.03.034. Epub 2016 Mar 17.
10
Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning.
J Neurosci. 2008 Aug 13;28(33):8338-43. doi: 10.1523/JNEUROSCI.2272-08.2008.

引用本文的文献

3
Disruptions in Reward-Guided Decision-Making Functions Are Predictive of Greater Oral Oxycodone Self-Administration in Male and Female Rats.
Biol Psychiatry Glob Open Sci. 2025 Jan 21;5(3):100450. doi: 10.1016/j.bpsgos.2025.100450. eCollection 2025 May.
5
Effects of chronic stress on cognitive function - From neurobiology to intervention.
Neurobiol Stress. 2024 Sep 2;33:100670. doi: 10.1016/j.ynstr.2024.100670. eCollection 2024 Nov.
6
Distinct roles of monkey OFC-subcortical pathways in adaptive behavior.
Nat Commun. 2024 Aug 28;15(1):6487. doi: 10.1038/s41467-024-50505-8.
8
Lesions to the mediodorsal thalamus, but not orbitofrontal cortex, enhance volatility beliefs linked to paranoia.
Cell Rep. 2024 Jun 25;43(6):114355. doi: 10.1016/j.celrep.2024.114355. Epub 2024 Jun 13.
9
Whole-brain Mapping of Inputs and Outputs of Specific Orbitofrontal Cortical Neurons in Mice.
Neurosci Bull. 2024 Nov;40(11):1681-1698. doi: 10.1007/s12264-024-01229-8. Epub 2024 May 27.
10

本文引用的文献

1
Model-Free and Model-Based Influences in Addiction-Related Behaviors.
Biol Psychiatry. 2019 Jun 1;85(11):936-945. doi: 10.1016/j.biopsych.2018.12.017. Epub 2019 Jan 4.
3
Ventral striatum's role in learning from gains and losses.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12398-E12406. doi: 10.1073/pnas.1809833115. Epub 2018 Dec 13.
4
Neurochemical and Behavioral Dissections of Decision-Making in a Rodent Multistage Task.
J Neurosci. 2019 Jan 9;39(2):295-306. doi: 10.1523/JNEUROSCI.2219-18.2018. Epub 2018 Nov 9.
5
What, If Anything, Is Rodent Prefrontal Cortex?
eNeuro. 2018 Oct 25;5(5). doi: 10.1523/ENEURO.0315-18.2018. eCollection 2018 Sep-Oct.
6
Volatility Facilitates Value Updating in the Prefrontal Cortex.
Neuron. 2018 Aug 8;99(3):598-608.e4. doi: 10.1016/j.neuron.2018.06.033. Epub 2018 Jul 19.
8
Orbitofrontal neurons signal reward predictions, not reward prediction errors.
Neurobiol Learn Mem. 2018 Sep;153(Pt B):137-143. doi: 10.1016/j.nlm.2018.01.013. Epub 2018 Jan 31.
9
Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala.
Cell Rep. 2018 Jan 23;22(4):905-918. doi: 10.1016/j.celrep.2017.12.097. Epub 2018 Jan 28.
10
Functional Heterogeneity within Rat Orbitofrontal Cortex in Reward Learning and Decision Making.
J Neurosci. 2017 Nov 1;37(44):10529-10540. doi: 10.1523/JNEUROSCI.1678-17.2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验