Suppr超能文献

细菌染色质转录

Transcription of Bacterial Chromatin.

机构信息

Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States.

Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.

出版信息

J Mol Biol. 2019 Sep 20;431(20):4040-4066. doi: 10.1016/j.jmb.2019.05.041. Epub 2019 May 31.

Abstract

Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.

摘要

几十年来的研究探索了染色质(与蛋白质和 RNA 相关的基因组 DNA)与所有生命领域的 RNA 聚合酶(RNAP)转录之间的相互作用。在细菌中,染色质被压缩成一个无膜的区域,称为拟核,这个区域的形状和组成会根据细菌的状态而变化。转录在塑造拟核和将其组织成域方面都起着关键作用。同时,染色质通过至少五种不同的机制影响转录:(i)阻断 RNAP 结合;(ii)阻碍 RNAP 前进;(iii)限制 DNA 拓扑结构;(iv)RNA 介导的相互作用;以及(v)大分子相分离和异质性,这可能会产生相分离的凝聚物。这些机制并非相互排斥,而是结合起来介导基因调控。在这里,我们回顾了这些机制的最新理解,重点关注 H-NS 引起的基因沉默、HU 协调转录以及 Dps 可能发生的相分离。由于方法学的进步,越来越多的关于细菌染色质转录的问题得到了回答,这使得细菌转录领域需要进行范式转变,将重点放在基因的原位调控上。我们可以期待这些答案将定义细菌染色质如何帮助协调和动态调节基因表达在不断变化的环境中。

相似文献

1
Transcription of Bacterial Chromatin.细菌染色质转录
J Mol Biol. 2019 Sep 20;431(20):4040-4066. doi: 10.1016/j.jmb.2019.05.041. Epub 2019 May 31.
6
RNA polymerase and the ribosome: the close relationship.RNA 聚合酶和核糖体:密切的关系。
Curr Opin Microbiol. 2013 Apr;16(2):112-7. doi: 10.1016/j.mib.2013.01.010. Epub 2013 Feb 22.
9
H-NS and RNA polymerase: a love-hate relationship?H-NS与RNA聚合酶:爱恨交织的关系?
Curr Opin Microbiol. 2015 Apr;24:53-9. doi: 10.1016/j.mib.2015.01.009. Epub 2015 Jan 30.

引用本文的文献

4
Development of a suite of -derived urea-inducible promoters.开发一套基于 - 的尿素诱导启动子。
Appl Environ Microbiol. 2024 Nov 20;90(11):e0127324. doi: 10.1128/aem.01273-24. Epub 2024 Oct 30.
7
Spatio-temporal organization of the chromosome from base to cellular length scales.从碱基到细胞长度尺度的染色体时空组织。
EcoSal Plus. 2024 Dec 12;12(1):eesp00012022. doi: 10.1128/ecosalplus.esp-0001-2022. Epub 2024 Jun 12.
10
Live to fight another day: The bacterial nucleoid under stress.活到改天再战:应激状态下的细菌拟核
Mol Microbiol. 2025 Feb;123(2):168-175. doi: 10.1111/mmi.15272. Epub 2024 May 1.

本文引用的文献

2
The Role of Archaeal Chromatin in Transcription.古菌染色质在转录中的作用。
J Mol Biol. 2019 Sep 20;431(20):4103-4115. doi: 10.1016/j.jmb.2019.05.006. Epub 2019 May 11.
3
Recent Advances in Understanding σ70-Dependent Transcription Initiation Mechanisms.σ70 依赖性转录起始机制的研究进展
J Mol Biol. 2019 Sep 20;431(20):3947-3959. doi: 10.1016/j.jmb.2019.04.046. Epub 2019 May 11.
4
Bacterial Transcription Factors: Regulation by Pick "N" Mix.细菌转录因子:Pick-N-Mix 调控
J Mol Biol. 2019 Sep 20;431(20):4067-4077. doi: 10.1016/j.jmb.2019.04.011. Epub 2019 Apr 16.
5
Mechanisms of Bacterial Transcription Termination.细菌转录终止的机制。
J Mol Biol. 2019 Sep 20;431(20):4030-4039. doi: 10.1016/j.jmb.2019.04.003. Epub 2019 Apr 9.
9
R-Loops as Cellular Regulators and Genomic Threats.R-Loops 作为细胞调控因子和基因组威胁
Mol Cell. 2019 Feb 7;73(3):398-411. doi: 10.1016/j.molcel.2019.01.024.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验