Suppr超能文献

剪接调控异常导致几种 F9 外显子点突变的致病性。

Splicing dysregulation contributes to the pathogenicity of several F9 exonic point variants.

机构信息

Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, Maryland.

Department of Statistics, University of Connecticut, Storrs, Connecticut.

出版信息

Mol Genet Genomic Med. 2019 Aug;7(8):e840. doi: 10.1002/mgg3.840. Epub 2019 Jun 30.

Abstract

BACKGROUND

Pre-mRNA splicing is a complex process requiring the identification of donor site, acceptor site, and branch point site with an adjacent polypyrimidine tract sequence. Splicing is regulated by splicing regulatory elements (SREs) with both enhancer and suppressor functions. Variants located in exonic regions can impact splicing through dysregulation of native splice sites, SREs, and cryptic splice site activation. While splicing dysregulation is considered primary disease-inducing mechanism of synonymous variants, its contribution toward disease phenotype of non-synonymous variants is underappreciated.

METHODS

In this study, we analyzed 415 disease-causing and 120 neutral F9 exonic point variants including both synonymous and non-synonymous for their effect on splicing using a series of in silico splice site prediction tools, SRE prediction tools, and in vitro minigene assays.

RESULTS

The use of splice site and SRE prediction tools in tandem provided better prediction but were not always in agreement with the minigene assays. The net effect of splicing dysregulation caused by variants was context dependent. Minigene assays revealed that perturbed splicing can be found.

CONCLUSION

Synonymous variants primarily cause disease phenotype via splicing dysregulation while additional mechanisms such as translation rate also play an important role. Splicing dysregulation is likely to contribute to the disease phenotype of several non-synonymous variants.

摘要

背景

前体 mRNA 剪接是一个复杂的过程,需要识别供体位点、受体位点和分支点,以及相邻的多嘧啶序列。剪接受剪接调控元件(SREs)的调节,具有增强子和抑制子的功能。位于外显子区域的变体可以通过调节天然剪接位点、SREs 和隐匿剪接位点的激活来影响剪接。虽然剪接失调被认为是同义变体引起疾病的主要机制,但它对非同义变体疾病表型的贡献尚未得到充分认识。

方法

在这项研究中,我们分析了 415 个致病和 120 个中性 F9 外显子点变体,包括同义变体和非同义变体,使用一系列基于计算机的剪接位点预测工具、SRE 预测工具和体外迷你基因测定来研究它们对剪接的影响。

结果

剪接位点和 SRE 预测工具的联合使用提供了更好的预测,但并不总是与迷你基因测定一致。变体引起的剪接失调的净效应取决于上下文。迷你基因测定显示,存在剪接受到干扰的情况。

结论

同义变体主要通过剪接失调引起疾病表型,而其他机制,如翻译速率,也起着重要作用。剪接失调可能导致几个非同义变体的疾病表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1098/6687662/c9d9ae75f0cb/MGG3-7-e840-g001.jpg

相似文献

1
Splicing dysregulation contributes to the pathogenicity of several F9 exonic point variants.
Mol Genet Genomic Med. 2019 Aug;7(8):e840. doi: 10.1002/mgg3.840. Epub 2019 Jun 30.
3
Pleiotropic effects of different exonic nucleotide changes at the same position contribute to hemophilia B phenotypic variation.
J Thromb Haemost. 2024 Apr;22(4):975-989. doi: 10.1016/j.jtha.2023.12.031. Epub 2024 Jan 4.
4
Apparent synonymous mutation F9 c.87A>G causes secretion failure by in-frame mutation with aberrant splicing.
Thromb Res. 2019 Jul;179:95-103. doi: 10.1016/j.thromres.2019.04.022. Epub 2019 May 1.
6
Splicing analysis of 26 F8 nucleotide variations using a minigene assay.
Haemophilia. 2019 Mar;25(2):306-315. doi: 10.1111/hae.13687. Epub 2019 Jan 28.
7
Genomic features defining exonic variants that modulate splicing.
Genome Biol. 2010;11(2):R20. doi: 10.1186/gb-2010-11-2-r20. Epub 2010 Feb 16.
9
Identification of seven variants in the col4a1 gene that alter RNA splicing by minigene assay.
Clin Genet. 2024 Sep;106(3):336-341. doi: 10.1111/cge.14546. Epub 2024 May 15.

引用本文的文献

1
In silico methods for predicting functional synonymous variants.
Genome Biol. 2023 May 22;24(1):126. doi: 10.1186/s13059-023-02966-1.
2
Structural, functional, and immunogenicity implications of F9 gene recoding.
Blood Adv. 2022 Jul 12;6(13):3932-3944. doi: 10.1182/bloodadvances.2022007094.
3
A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell.
Biochemistry (Mosc). 2021 Aug;86(8):976-991. doi: 10.1134/S0006297921080083.
4
Hepatic lipase (LIPC) sequencing in individuals with extremely high and low high-density lipoprotein cholesterol levels.
PLoS One. 2020 Dec 16;15(12):e0243919. doi: 10.1371/journal.pone.0243919. eCollection 2020.
5
A Single Synonymous Variant (c.354G>A [p.P118P]) in Confers Enhanced Specific Activity.
Int J Mol Sci. 2019 Nov 15;20(22):5734. doi: 10.3390/ijms20225734.

本文引用的文献

1
A new and updated resource for codon usage tables.
BMC Bioinformatics. 2017 Sep 2;18(1):391. doi: 10.1186/s12859-017-1793-7.
3
Single synonymous mutation in factor IX alters protein properties and underlies haemophilia B.
J Med Genet. 2017 May;54(5):338-345. doi: 10.1136/jmedgenet-2016-104072. Epub 2016 Dec 22.
5
Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions.
Adv Bioinformatics. 2016;2016:5614058. doi: 10.1155/2016/5614058. Epub 2016 May 24.
6
Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function.
PLoS Genet. 2016 May 26;12(5):e1006082. doi: 10.1371/journal.pgen.1006082. eCollection 2016 May.
7
Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools.
PLoS Genet. 2016 Jan 13;12(1):e1005756. doi: 10.1371/journal.pgen.1005756. eCollection 2016 Jan.
9
Genome-wide discovery of human splicing branchpoints.
Genome Res. 2015 Feb;25(2):290-303. doi: 10.1101/gr.182899.114. Epub 2015 Jan 5.
10
Genomic HEXploring allows landscaping of novel potential splicing regulatory elements.
Nucleic Acids Res. 2014;42(16):10681-97. doi: 10.1093/nar/gku736. Epub 2014 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验