Suppr超能文献

单原子合金的一氧化碳抗性与结构稳定性

Carbon Monoxide Poisoning Resistance and Structural Stability of Single Atom Alloys.

作者信息

Darby Matthew T, Sykes E Charles H, Michaelides Angelos, Stamatakis Michail

机构信息

1Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE UK.

2Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155 USA.

出版信息

Top Catal. 2018;61(5):428-438. doi: 10.1007/s11244-017-0882-1. Epub 2018 Jan 8.

Abstract

Platinum group metals (PGMs) serve as highly active catalysts in a variety of heterogeneous chemical processes. Unfortunately, their high activity is accompanied by a high affinity for CO and thus, PGMs are susceptible to poisoning. Alloying PGMs with metals exhibiting lower affinity to CO could be an effective strategy toward preventing such poisoning. In this work, we use density functional theory to demonstrate this strategy, focusing on highly dilute alloys of PGMs (Pd, Pt, Rh, Ir and Ni) with poison resistant coinage metal hosts (Cu, Ag, Au), such that individual PGM atoms are dispersed at the atomic limit forming single atom alloys (SAAs). We show that compared to the pure metals, CO exhibits lower binding strength on the majority of SAAs studied, and we use kinetic Monte Carlo simulation to obtain relevant temperature programed desorption spectra, which are found to be in good agreement with experiments. Additionally, we consider the effects of CO adsorption on the structure of SAAs. We calculate segregation energies which are indicative of the stability of dopant atoms in the bulk compared to the surface layer, as well as aggregation energies to determine the stability of isolated surface dopant atoms compared to dimer and trimer configurations. Our calculations reveal that CO adsorption induces dopant atom segregation into the surface layer for all SAAs considered here, whereas aggregation and island formation may be promoted or inhibited depending on alloy constitution and CO coverage. This observation suggests the possibility of controlling ensemble effects in novel catalyst architectures through CO-induced aggregation and kinetic trapping.

摘要

铂族金属(PGMs)在各种多相化学过程中用作高活性催化剂。不幸的是,它们的高活性伴随着对CO的高亲和力,因此,PGMs易受中毒影响。将PGMs与对CO亲和力较低的金属合金化可能是防止此类中毒的有效策略。在这项工作中,我们使用密度泛函理论来证明这一策略,重点研究PGMs(Pd、Pt、Rh、Ir和Ni)与抗中毒货币金属主体(Cu、Ag、Au)的高度稀合金,使得单个PGM原子以原子极限分散形成单原子合金(SAAs)。我们表明,与纯金属相比,CO在所研究的大多数SAAs上表现出较低的结合强度,并且我们使用动力学蒙特卡罗模拟来获得相关的程序升温脱附光谱,发现其与实验结果吻合良好。此外,我们考虑了CO吸附对SAAs结构的影响。我们计算了偏析能,它表示掺杂原子在体相中相对于表面层的稳定性,以及聚集能,以确定孤立表面掺杂原子相对于二聚体和三聚体构型的稳定性。我们的计算表明,对于这里考虑的所有SAAs,CO吸附会导致掺杂原子偏析到表面层中,而聚集和岛状形成可能会根据合金组成和CO覆盖率而被促进或抑制。这一观察结果表明,通过CO诱导的聚集和动力学捕获来控制新型催化剂结构中的集合效应是可能的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e4f/6560695/a5ed634b981d/11244_2017_882_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验