Kothakonda Manish, LaCroix Sarah, Zhou Chengyu, Yang Ji, Su Ji, Zhao Qing
Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.
Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ACS Catal. 2025 Jun 20;15(13):11608-11616. doi: 10.1021/acscatal.5c02570. eCollection 2025 Jul 4.
Direct methane conversion to liquid fuels or value-added chemicals is a promising technology to utilize natural resources without resorting to further petroleum extraction. However, discovering efficient catalysts for this reaction is challenging due to either coke formation or unfavorable C-H bond activation. Herein, we design single-atom alloy (SAA) catalysts to simultaneously eliminate the above two bottlenecks based on mechanism-guided strategies: (1) the active single atom enables favorable C-H bond breaking and (2) the less reactive host metal facilitates C-C coupling and thus avoids strong binding of carbonaceous species. Employing electronic structure theory calculations, we screened the stability of multiple SAAs with 3d-5d transition metals atomically dispersed on a copper surface in terms of avoiding dopant aggregation and segregation. We then evaluated reactivities of the stable SAAs as catalysts for direct methane conversion to C products, including methane dehydrogenation and C-C coupling mechanisms. Combining selectivity analysis with kinetic modeling, we predicted that nickel dispersed on copper, i.e., Ni/Cu SAA, is a highly active and selective catalyst that can efficiently transform methane to ethylene. This work designs efficient SAA catalysts for direct methane activation and provides chemical insights into engineering compositions of SAAs to tune their catalytic performances.
将甲烷直接转化为液体燃料或高附加值化学品是一种有前景的技术,可在不依赖进一步石油开采的情况下利用自然资源。然而,由于积炭形成或不利的C-H键活化,发现用于该反应的高效催化剂具有挑战性。在此,我们基于机理导向策略设计单原子合金(SAA)催化剂,以同时消除上述两个瓶颈:(1)活性单原子有利于C-H键断裂,(2)活性较低的主体金属促进C-C偶联,从而避免碳质物种的强吸附。利用电子结构理论计算,我们从避免掺杂剂聚集和偏析的角度筛选了多种3d-5d过渡金属原子分散在铜表面的SAA的稳定性。然后,我们评估了稳定SAA作为甲烷直接转化为C产物催化剂的反应活性,包括甲烷脱氢和C-C偶联机理。结合选择性分析和动力学建模,我们预测分散在铜上的镍,即Ni/Cu SAA,是一种高活性和选择性的催化剂,能够有效地将甲烷转化为乙烯。这项工作设计了用于甲烷直接活化的高效SAA催化剂,并为工程设计SAA的组成以调节其催化性能提供了化学见解。