Bliem Roland, van der Hoeven Jessi E S, Hulva Jan, Pavelec Jiri, Gamba Oscar, de Jongh Petra E, Schmid Michael, Blaha Peter, Diebold Ulrike, Parkinson Gareth S
Institute of Applied Physics, TU Wien, 1050 Vienna, Austria;
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials, Utrecht University, NL-3584 CG Utrecht, The Netherlands;
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):8921-6. doi: 10.1073/pnas.1605649113. Epub 2016 Jul 25.
Interactions between catalytically active metal particles and reactant gases depend strongly on the particle size, particularly in the subnanometer regime where the addition of just one atom can induce substantial changes in stability, morphology, and reactivity. Here, time-lapse scanning tunneling microscopy (STM) and density functional theory (DFT)-based calculations are used to study how CO exposure affects the stability of Pt adatoms and subnano clusters at the Fe3O4(001) surface, a model CO oxidation catalyst. The results reveal that CO plays a dual role: first, it induces mobility among otherwise stable Pt adatoms through the formation of Pt carbonyls (Pt1-CO), leading to agglomeration into subnano clusters. Second, the presence of the CO stabilizes the smallest clusters against decay at room temperature, significantly modifying the growth kinetics. At elevated temperatures, CO desorption results in a partial redispersion and recovery of the Pt adatom phase.
具有催化活性的金属颗粒与反应气体之间的相互作用强烈依赖于颗粒尺寸,特别是在亚纳米尺度下,仅添加一个原子就能引起稳定性、形态和反应活性的显著变化。在此,利用时间分辨扫描隧道显微镜(STM)和基于密度泛函理论(DFT)的计算方法,研究了CO暴露如何影响Fe3O4(001)表面(一种典型的CO氧化催化剂)上Pt吸附原子和亚纳米团簇的稳定性。结果表明,CO起到了双重作用:首先,它通过形成羰基铂(Pt1-CO)诱导原本稳定的Pt吸附原子发生迁移,导致团聚形成亚纳米团簇。其次,CO的存在使最小的团簇在室温下稳定,防止其分解,显著改变了生长动力学。在高温下,CO脱附导致Pt吸附原子相部分重新分散和恢复。