Samuel J. Wood Library, Weill Cornell Medicine, New York, NY,
Weill Cornell Graduate School, Weill Cornell Medicine, New York, NY,
J Med Libr Assoc. 2019 Jul;107(3):420-424. doi: 10.5195/jmla.2019.401. Epub 2019 Jul 1.
The US National Institutes of Health (NIH) funds academic institutions for training doctoral (PhD) students and postdoctoral fellows. These training grants, known as T32 grants, require schools to create, in a particular format, seven or eight Word documents describing the program and its participants. Weill Cornell Medicine aimed to use structured name and citation data to dynamically generate tables, thus saving administrators time.
The author's team collected identity and publication metadata from existing systems of record, including our student information system and previous T32 submissions. These data were fed into our ReCiter author disambiguation engine. Well-structured bibliographic metadata, including the rank of the target author, were output and stored in a MySQL database. We then ran a database query that output a Word extensible markup (XML) document according to NIH's specifications. We generated the T32 training document using a query that ties faculty listed on a grant submission with publications that they and their mentees authored, bolding author names as required. Because our source data are well-structured and well-defined, the only parameter needed in the query is a single identifier for the grant itself. The open source code for producing this document is at http://dx.doi.org/10.5281/zenodo.2593545.
Manually writing a table for T32 grant submissions is a substantial administrative burden; some documents generated in this manner exceed 150 pages. Provided they have a source for structured identity and publication data, administrators can use the T32 Table Generator to readily output a table.
美国国立卫生研究院(NIH)为学术机构提供博士(PhD)学生和博士后研究员培训资金。这些培训补助金,称为 T32 补助金,要求学校以特定格式创建七到八个描述该计划及其参与者的 Word 文档。威尔康奈尔医学院旨在使用结构化的姓名和引文数据来动态生成表格,从而为管理员节省时间。
作者的团队从现有的记录系统(包括我们的学生信息系统和以前的 T32 提交)中收集了身份和出版物元数据。这些数据被输入到我们的 ReCiter 作者去重引擎中。包括目标作者排名在内的结构化书目元数据被输出并存储在 MySQL 数据库中。然后,我们运行了一个数据库查询,根据 NIH 的规范输出一个 Word 可扩展标记语言 (XML) 文档。我们使用一个查询生成 T32 培训文档,该查询将补助金提交中列出的教师与他们及其指导的学生撰写的出版物联系起来,根据需要将作者姓名加粗。由于我们的源数据结构良好且定义明确,查询中唯一需要的参数是补助金本身的唯一标识符。生成此文档的开源代码可在 http://dx.doi.org/10.5281/zenodo.2593545 处获得。
手动为 T32 补助金提交编写表格是一项繁重的管理负担;以这种方式生成的一些文档超过 150 页。只要他们有结构化的身份和出版数据来源,管理员就可以使用 T32 表格生成器轻松输出表格。