Suppr超能文献

PropaNet:通过网络传播构建随时间变化的特定条件转录网络

PropaNet: Time-Varying Condition-Specific Transcriptional Network Construction by Network Propagation.

作者信息

Ahn Hongryul, Jo Kyuri, Jeong Dabin, Pak Minwoo, Hur Jihye, Jung Woosuk, Kim Sun

机构信息

Bioinformatics Institute, Seoul National University, Seoul, South Korea.

Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea.

出版信息

Front Plant Sci. 2019 Jun 14;10:698. doi: 10.3389/fpls.2019.00698. eCollection 2019.

Abstract

Transcription factor (TF) has a significant influence on the state of a cell by regulating multiple down-stream genes. Thus, experimental and computational biologists have made great efforts to construct TF gene networks for regulatory interactions between TFs and their target genes. Now, an important research question is how to utilize TF networks to investigate the response of a plant to stress at the transcription control level using time-series transcriptome data. In this article, we present a new computational network, PropaNet, to investigate dynamics of TF networks from time-series transcriptome data using two state-of-the-art network analysis techniques, influence maximization and network propagation. PropaNet uses the influence maximization technique to produce a ranked list of TFs, in the order of TF that explains differentially expressed genes (DEGs) better at each time point. Then, a network propagation technique is used to select a group of TFs that explains DEGs best as a whole. For the analysis of Arabidopsis time series datasets from AtGenExpress, we used PlantRegMap as a template TF network and performed PropaNet analysis to investigate transcriptional dynamics of Arabidopsis under cold and heat stress. The time varying TF networks showed that Arabidopsis responded to cold and heat stress quite differently. For cold stress, bHLH and bZIP type TFs were the first responding TFs and the cold signal influenced histone variants, various genes involved in cell architecture, osmosis and restructuring of cells. However, the consequences of plants under heat stress were up-regulation of genes related to accelerating differentiation and starting re-differentiation. In terms of energy metabolism, plants under heat stress show elevated metabolic process and resulting in an exhausted status. We believe that PropaNet will be useful for the construction of condition-specific time-varying TF network for time-series data analysis in response to stress. PropaNet is available at http://biohealth.snu.ac.kr/software/PropaNet.

摘要

转录因子(TF)通过调控多个下游基因对细胞状态产生重大影响。因此,实验生物学家和计算生物学家都付出了巨大努力来构建TF基因网络,以研究TF与其靶基因之间的调控相互作用。目前,一个重要的研究问题是如何利用TF网络,通过时间序列转录组数据在转录控制水平上研究植物对胁迫的响应。在本文中,我们提出了一种新的计算网络PropaNet,利用影响最大化和网络传播这两种最先进的网络分析技术,从时间序列转录组数据中研究TF网络的动态变化。PropaNet使用影响最大化技术生成TF的排名列表,按照在每个时间点能更好地解释差异表达基因(DEG)的TF顺序排列。然后,使用网络传播技术选择一组整体上能最好地解释DEG的TF。对于来自AtGenExpress的拟南芥时间序列数据集的分析,我们使用PlantRegMap作为模板TF网络,并进行PropaNet分析,以研究拟南芥在冷胁迫和热胁迫下的转录动态。随时间变化的TF网络表明,拟南芥对冷胁迫和热胁迫的反应截然不同。对于冷胁迫,bHLH和bZIP类型的TF是首先做出反应的TF,冷信号影响组蛋白变体以及各种参与细胞结构、渗透和细胞重组的基因。然而,热胁迫下植物的结果是与加速分化和开始重新分化相关的基因上调。在能量代谢方面,热胁迫下的植物显示出代谢过程增强,导致能量耗尽状态。我们相信PropaNet将有助于构建针对特定条件的随时间变化的TF网络,用于分析响应胁迫的时间序列数据。PropaNet可在http://biohealth.snu.ac.kr/software/PropaNet获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed9a/6587906/3f5d117772a8/fpls-10-00698-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验