Suppr超能文献

DRIM:一个通过特定条件多组学数据整合在分子水平研究药物反应的基于网络的系统。

DRIM: A Web-Based System for Investigating Drug Response at the Molecular Level by Condition-Specific Multi-Omics Data Integration.

作者信息

Oh Minsik, Park Sungjoon, Lee Sangseon, Lee Dohoon, Lim Sangsoo, Jeong Dabin, Jo Kyuri, Jung Inuk, Kim Sun

机构信息

Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea.

Bioinformatics Institute, Seoul National University, Seoul, South Korea.

出版信息

Front Genet. 2020 Nov 12;11:564792. doi: 10.3389/fgene.2020.564792. eCollection 2020.

Abstract

Pharmacogenomics is the study of how genes affect a person's response to drugs. Thus, understanding the effect of drug at the molecular level can be helpful in both drug discovery and personalized medicine. Over the years, transcriptome data upon drug treatment has been collected and several databases compiled before drug treatment cancer cell multi-omics data with drug sensitivity ( , AUC) or time-series transcriptomic data after drug treatment. However, analyzing transcriptome data upon drug treatment is challenging since more than 20,000 genes interact in complex ways. In addition, due to the difficulty of both time-series analysis and multi-omics integration, current methods can hardly perform analysis of databases with different data characteristics. One effective way is to interpret transcriptome data in terms of well-characterized biological pathways. Another way is to leverage state-of-the-art methods for multi-omics data integration. In this paper, we developed Drug Response analysis Integrating Multi-omics and time-series data (DRIM), an integrative multi-omics and time-series data analysis framework that identifies perturbed sub-pathways and regulation mechanisms upon drug treatment. The system takes drug name and cell line identification numbers or user's drug control/treat time-series gene expression data as input. Then, analysis of multi-omics data upon drug treatment is performed in two perspectives. For the multi-omics perspective analysis, -related multi-omics potential mediator genes are determined by embedding multi-omics data to gene-centric vector space using a tensor decomposition method and an autoencoder deep learning model. Then, perturbed pathway analysis of potential mediator genes is performed. For the time-series perspective analysis, time-varying perturbed sub-pathways upon drug treatment are constructed. Additionally, a network involving transcription factors (TFs), multi-omics potential mediator genes, and perturbed sub-pathways is constructed, and paths to perturbed pathways from TFs are determined by an influence maximization method. To demonstrate the utility of our system, we provide analysis results of sub-pathway regulatory mechanisms in breast cancer cell lines of different drug sensitivity. DRIM is available at: http://biohealth.snu.ac.kr/software/DRIM/.

摘要

药物基因组学是研究基因如何影响个体对药物反应的学科。因此,在分子水平上理解药物的作用对于药物研发和个性化医疗都有帮助。多年来,已经收集了药物治疗后的转录组数据,并在药物治疗前编译了几个包含癌细胞多组学数据及药物敏感性(如AUC)或药物治疗后的时间序列转录组数据的数据库。然而,分析药物治疗后的转录组数据具有挑战性,因为超过20000个基因以复杂的方式相互作用。此外,由于时间序列分析和多组学整合都存在困难,当前方法很难对具有不同数据特征的数据库进行分析。一种有效的方法是根据特征明确的生物途径来解释转录组数据。另一种方法是利用最先进的多组学数据整合方法。在本文中,我们开发了整合多组学和时间序列数据的药物反应分析(DRIM),这是一个整合多组学和时间序列数据分析的框架,可识别药物治疗后受干扰的子途径和调控机制。该系统将药物名称、细胞系识别号或用户的药物对照/治疗时间序列基因表达数据作为输入。然后,从两个角度对药物治疗后的多组学数据进行分析。对于多组学角度的分析,通过使用张量分解方法和自动编码器深度学习模型将多组学数据嵌入以基因为中心的向量空间来确定与 -相关的多组学潜在介导基因。然后,对潜在介导基因进行受干扰途径分析。对于时间序列角度的分析,构建药物治疗后的随时间变化的受干扰子途径。此外,构建一个涉及转录因子(TFs)、多组学潜在介导基因和受干扰子途径的网络,并通过影响最大化方法确定从TFs到受干扰途径的路径。为了证明我们系统的实用性,我们提供了不同药物敏感性乳腺癌细胞系中子途径调控机制的分析结果。DRIM可在以下网址获取:http://biohealth.snu.ac.kr/software/DRIM/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea1/7689278/d5b2208c50bd/fgene-11-564792-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验