Suppr超能文献

时间受限网络中的影响力最大化识别调控受扰通路的转录因子。

Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways.

作者信息

Jo Kyuri, Jung Inuk, Moon Ji Hwan, Kim Sun

机构信息

Department of Computer Science and Engineering.

Interdisciplinary Program in Bioinformatics.

出版信息

Bioinformatics. 2016 Jun 15;32(12):i128-i136. doi: 10.1093/bioinformatics/btw275.

Abstract

MOTIVATION

To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension.

RESULTS

In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein-protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in TF-PATHWAY MAP IN TIME CLOCK: TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway.

AVAILABILITY AND IMPLEMENTATION

TimeTP is implemented in Python and available at http://biohealth.snu.ac.kr/software/TimeTP/Supplementary information: Supplementary data are available at Bioinformatics online.

CONTACT

sunkim.bioinfo@snu.ac.kr.

摘要

动机

为了理解生物过程的动态本质,识别在变化环境中受到干扰的通路以及推断触发该反应的调节因子至关重要。然而,当前的时间序列分析方法在同时识别受干扰的通路和调节因子方面能力不足。广泛使用的方法包括确定基因集的方法,如差异表达基因或基因簇,而这些基因集需要使用其他工具根据生物通路进行进一步解释。大多数通路分析方法并非针对时间序列数据设计,并且它们没有考虑基因 - 基因在时间维度上的影响。

结果

在本文中,我们提出了一种新颖的时间序列分析方法TimeTP,用于确定调节通路扰动的转录因子(TF),该方法将重点缩小到受干扰的子通路,并利用基因调控网络和蛋白质 - 蛋白质相互作用网络来定位触发扰动的TF。TimeTP首先识别沿时间传播表达变化的受干扰子通路。将受干扰子通路的起点映射到网络中,并通过影响最大化技术确定最具影响力的TF。分析结果在TF - 通路时间时钟图中直观地总结:将TimeTP应用于PIK3CA敲入数据集,发现了与PIP3信号通路相关的重要子通路及其调节因子。

可用性和实现

TimeTP用Python实现,可在http://biohealth.snu.ac.kr/software/TimeTP/获取。补充信息:补充数据可在《生物信息学》在线获取。

联系方式

sunkim.bioinfo@snu.ac.kr

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd7/4908359/2cbd65c20bdb/btw275f1p.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验