Suppr超能文献

一种用于最优两阶段设计的变分方法。

A variational approach to optimal two-stage designs.

作者信息

Pilz Maximilian, Kunzmann Kevin, Herrmann Carolin, Rauch Geraldine, Kieser Meinhard

机构信息

Institute of Medical Biometry and Informatics, University Medical Center Ruprecht-Karls University Heidelberg, Heidelberg, Germany.

Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany.

出版信息

Stat Med. 2019 Sep 20;38(21):4159-4171. doi: 10.1002/sim.8291. Epub 2019 Jul 1.

Abstract

Recalculating the sample size in adaptive two-stage designs is a well-established method to gain flexibility in a clinical trial. Jennison and Turnbull (2015) proposed an "optimal" adaptive two-stage design based on the inverse normal combination test, which minimizes a mixed criterion of expected sample size under the alternative and conditional power. We demonstrate that the use of a combination test is not necessary to control the type one error rate and use variational techniques to develop a general adaptive design that is globally optimal under predefined optimality criteria. This approach yields to more efficient designs and furthermore allows to investigate the efficiency of the inverse normal method and the relation between local (interim-based) recalculation rules and global (unconditional) optimality of adaptive two-stage designs.

摘要

在适应性两阶段设计中重新计算样本量是在临床试验中获得灵活性的一种成熟方法。詹尼森和特恩布尔(2015年)基于逆正态组合检验提出了一种“最优”适应性两阶段设计,该设计在备择假设和条件检验效能下将预期样本量的混合准则最小化。我们证明,控制一类错误率并不一定需要使用组合检验,并且使用变分技术来开发一种在预定义最优性准则下全局最优的通用适应性设计。这种方法产生了更有效的设计,此外还允许研究逆正态方法的效率以及适应性两阶段设计的局部(基于期中分析)重新计算规则与全局(无条件)最优性之间的关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验