Liu Chia Hao, Tao Yunzhe, Hsu Daniel, Du Qiang, Billinge Simon J L
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, 10027, USA.
Department of Computer Science, Columbia University, New York, New York, 10027, USA.
Acta Crystallogr A Found Adv. 2019 Jul 1;75(Pt 4):633-643. doi: 10.1107/S2053273319005606. Epub 2019 Jun 26.
A method is presented for predicting the space group of a structure given a calculated or measured atomic pair distribution function (PDF) from that structure. The method utilizes machine learning models trained on more than 100 000 PDFs calculated from structures in the 45 most heavily represented space groups. In particular, a convolutional neural network (CNN) model is presented which yields a promising result in that it correctly identifies the space group among the top-6 estimates 91.9% of the time. The CNN model also successfully identifies space groups for 12 out of 15 experimental PDFs. Interesting aspects of the failed estimates are discussed, which indicate that the CNN is failing in similar ways as conventional indexing algorithms applied to conventional powder diffraction data. This preliminary success of the CNN model shows the possibility of model-independent assessment of PDF data on a wide class of materials.
本文提出了一种方法,用于在已知某结构的计算或测量原子对分布函数(PDF)的情况下预测该结构的空间群。该方法利用了在从45个代表性最强的空间群中的结构计算得到的100000多个PDF上训练的机器学习模型。特别地,提出了一种卷积神经网络(CNN)模型,该模型取得了有前景的结果,即在6个最高估计值中,它有91.9%的时间能正确识别空间群。CNN模型还成功地为15个实验PDF中的12个识别出了空间群。讨论了失败估计的有趣方面,这表明CNN的失败方式与应用于传统粉末衍射数据的传统索引算法类似。CNN模型的这一初步成功表明了对广泛材料类别的PDF数据进行与模型无关评估的可能性。