Suppr超能文献

通过使用原始“理想”衍射图谱训练卷积神经网络来预测空间群和晶胞体积及其在“真实”实验数据中的应用。

Prediction of the space group and cell volume by training a convolutional neural network with primitive 'ideal' diffraction profiles and its application to 'real' experimental data.

作者信息

Ozaki Hiroyuki, Ishida Naoya, Kiyobayashi Tetsu

机构信息

Research Institute of Electrochemical Energy, Department of Energy and Environment National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka Ikeda Osaka563-8577 Japan.

出版信息

J Appl Crystallogr. 2025 Apr 25;58(Pt 3):718-730. doi: 10.1107/S1600576725002419. eCollection 2025 Jun 1.

Abstract

This study describes a deep learning approach to predict the space group and unit-cell volume of inorganic crystals from their powder X-ray diffraction profiles. Using an inorganic crystallographic database, convolutional neural network (CNN) models were successfully constructed with the δ-function-like 'ideal' X-ray diffraction profiles derived solely from the intrinsic properties of the crystal structure, which are dependent on neither the incident X-ray wavelength nor the line shape of the profiles. We examined how the statistical metrics ( the prediction accuracy, precision and recall) are influenced by the ensemble averaging technique and the multi-task learning approach; six CNN models were created from an identical data set for the former, and the space group classification was coupled with the unit-cell volume prediction in a CNN architecture for the latter. The CNN models trained in the 'ideal' world were tested with 'real' X-ray profiles for eleven materials such as TiO, LiNiO and LiMnO. While the models mostly fared well in the 'real' world, the cases at odds were scrutinized to elucidate the causes of the mismatch. Specifically for LiMnO, detailed crystallographic considerations revealed that the mismatch can stem from the state of the specific material and/or from the quality of the experimental data, and not from the CNN models. The present study demonstrates that we can obviate the need for emulating experimental diffraction profiles in training CNN models to elicit structural information, thereby focusing efforts on further improvements.

摘要

本研究描述了一种深度学习方法,用于从粉末X射线衍射图谱预测无机晶体的空间群和晶胞体积。利用一个无机晶体学数据库,仅从晶体结构的固有特性导出的类似δ函数的“理想”X射线衍射图谱成功构建了卷积神经网络(CNN)模型,这些特性既不依赖于入射X射线波长,也不依赖于图谱的线形。我们研究了统计指标(预测准确率、精确率和召回率)如何受到总体平均技术和多任务学习方法的影响;对于前者,从相同的数据集中创建了六个CNN模型,对于后者,在一个CNN架构中将空间群分类与晶胞体积预测相结合。在“理想”世界中训练的CNN模型用十一种材料(如TiO、LiNiO和LiMnO)的“真实”X射线图谱进行了测试。虽然模型在“真实”世界中大多表现良好,但对不一致的情况进行了仔细审查以阐明不匹配的原因。特别是对于LiMnO,详细的晶体学考虑表明,不匹配可能源于特定材料的状态和/或实验数据的质量,而不是源于CNN模型。本研究表明,我们可以避免在训练CNN模型以获取结构信息时模拟实验衍射图谱的需要,从而将精力集中在进一步改进上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e8a/12135985/7135e45a0d6e/j-58-00718-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验