Venkatraman Vishwesh, Carvalho Patricia Almeida
Norwegian University of Science and Technology, 7491Trondheim, Norway.
SINTEF Materials Physics, 0373Oslo, Norway.
J Appl Crystallogr. 2024 Jun 18;57(Pt 4):975-985. doi: 10.1107/S1600576724004497. eCollection 2024 Aug 1.
Predicting crystal symmetry simply from chemical composition has remained challenging. Several machine-learning approaches can be employed, but the predictive value of popular crystallographic databases is relatively modest due to the paucity of data and uneven distribution across the 230 space groups. In this work, virtually all crystallographic information available to science has been compiled and used to train and test multiple machine-learning models. Composition-driven random-forest classification relying on a large set of descriptors showed the best performance. The predictive models for crystal system, Bravais lattice, point group and space group of inorganic compounds are made publicly available as easy-to-use software downloadable from https://gitlab.com/vishsoft/cosy.
仅根据化学成分预测晶体对称性一直具有挑战性。可以采用几种机器学习方法,但由于数据匮乏以及在230种空间群中的分布不均,流行的晶体学数据库的预测价值相对有限。在这项工作中,几乎所有科学界可获得的晶体学信息都被收集起来,用于训练和测试多个机器学习模型。依赖大量描述符的成分驱动随机森林分类表现出最佳性能。无机化合物晶体系统、布拉维晶格、点群和空间群的预测模型作为易于使用的软件公开提供,可从https://gitlab.com/vishsoft/cosy下载。