Lettmann Tobias, Rohlfing Michael
Institut für Festkörpertheorie , Westfälische Wilhelms-Universität Münster , 48149 Münster , Germany.
J Chem Theory Comput. 2019 Aug 13;15(8):4547-4554. doi: 10.1021/acs.jctc.9b00223. Epub 2019 Jul 2.
Excited electronic states of small and large π-conjugated organic molecules can be described within ab initio many-body perturbation theory, notably by the GW approximation for the electron self-energy operator combined with the Bethe-Salpeter equation for correlated electron-hole excitations. In this context, the Tamm-Dancoff approximation is routinely employed to reduce the computational effort. It is known that the use of this approximation introduces errors of several 100 meV for small organic molecules but is negligible for extended systems. In this paper, we investigate how exactly the transition between these two regimes happens, by calculating the optical excitation energies of a series of polythiophene molecules of different sizes. We determine which parts of the electron-hole interaction are responsible for the deviation and show that the quantitative effects of the Tamm-Dancoff approximation depend sensitively on the size of the electronic system, in particular on the electronic conjugation length.
大小不同的π共轭有机分子的激发电子态可以在从头算多体微扰理论中进行描述,特别是通过电子自能算符的GW近似与相关电子-空穴激发的贝叶斯-萨尔皮特方程相结合来描述。在此背景下,通常采用塔姆-丹科夫近似来减少计算量。已知对于小分子有机分子,使用这种近似会引入几百毫电子伏的误差,但对于扩展体系来说可以忽略不计。在本文中,我们通过计算一系列不同大小的聚噻吩分子的光激发能,来研究这两种情况之间的转变究竟是如何发生的。我们确定了电子-空穴相互作用的哪些部分导致了偏差,并表明塔姆-丹科夫近似的定量效应敏感地依赖于电子体系的大小,特别是电子共轭长度。