Suppr超能文献

简化 GW/BSE 方法用于大分子和纳米材料的带电和中性激发能。

Simplified GW/BSE Approach for Charged and Neutral Excitation Energies of Large Molecules and Nanomaterials.

机构信息

Department of Chemistry, Columbia University, New York, New York 10027, United States.

Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States.

出版信息

J Chem Theory Comput. 2022 Jun 14;18(6):3438-3446. doi: 10.1021/acs.jctc.2c00087. Epub 2022 May 11.

Abstract

Inspired by Grimme's simplified Tamm-Dancoff density functional theory approach [Grimme, S. 2013, 138, 244104], we describe a simplified approach to excited-state calculations within the GW approximation to the self-energy and the Bethe-Salpeter equation (BSE), which we call sGW/sBSE. The primary simplification to the electron repulsion integrals yields the same structure as with tensor hypercontraction, such that our method has a storage requirement that grows quadratically with system size and computational timing that grows cubically with system size. The performance of sGW is tested on the ionization potential of the molecules in the GW100 test set, for which it differs from GW calculations by only 0.2 eV. The performance of sBSE (based on the sGW input) is tested on the excitation energies of molecules in Thiel's set, for which it differs from GW/BSE calculations by about 0.5 eV. As examples of the systems that can be routinely studied with sGW/sBSE, we calculate the band gap and excitation energy of hydrogen-passivated silicon nanocrystals with up to 2650 electrons in 4678 spatial orbitals and the absorption spectra of two large organic dye molecules with hundreds of atoms.

摘要

受 Grimme 简化的 Tamm-Dancoff 密度泛函理论方法的启发[Grimme, S. 2013, 138, 244104],我们描述了一种简化的方法,用于在自能和 Bethe-Salpeter 方程 (BSE) 的 GW 近似下进行激发态计算,我们称之为 sGW/sBSE。电子排斥积分的主要简化产生了与张量超收缩相同的结构,因此我们的方法的存储要求随系统大小呈二次增长,计算时间随系统大小呈立方增长。sGW 的性能在 GW100 测试集中的分子的电离势上进行了测试,其与 GW 计算的差异仅为 0.2 eV。sBSE(基于 sGW 输入)的性能在 Thiel 集的分子激发能上进行了测试,其与 GW/BSE 计算的差异约为 0.5 eV。作为可以用 sGW/sBSE 常规研究的系统的示例,我们计算了具有多达 2650 个电子的氢钝化硅纳米晶体的带隙和激发能,以及两个具有数百个原子的大型有机染料分子的吸收光谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验