Suppr超能文献

基于深度先验的高光谱全色锐化

Hyperspectral Pansharpening With Deep Priors.

作者信息

Xie Weiying, Lei Jie, Cui Yuhang, Li Yunsong, Du Qian

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 May;31(5):1529-1543. doi: 10.1109/TNNLS.2019.2920857. Epub 2019 Jun 28.

Abstract

Hyperspectral (HS) image can describe subtle differences in the spectral signatures of materials, but it has low spatial resolution limited by the existing technical and budget constraints. In this paper, we propose a promising HS pansharpening method with deep priors (HPDP) to fuse a low-resolution (LR) HS image with a high-resolution (HR) panchromatic (PAN) image. Different from the existing methods, we redefine the spectral response function (SRF) based on the larger eigenvalue of structure tensor (ST) matrix for the first time that is more in line with the characteristics of HS imaging. Then, we introduce HFNet to capture deep residual mapping of high frequency across the upsampled HS image and the PAN image in a band-by-band manner. Specifically, the learned residual mapping of high frequency is injected into the structural transformed HS images, which are the extracted deep priors served as additional constraint in a Sylvester equation to estimate the final HR HS image. Comparative analyses validate that the proposed HPDP method presents the superior pansharpening performance by ensuring higher quality both in spatial and spectral domains for all types of data sets. In addition, the HFNet is trained in the high-frequency domain based on multispectral (MS) images, which overcomes the sensitivity of deep neural network (DNN) to data sets acquired by different sensors and the difficulty of insufficient training samples for HS pansharpening.

摘要

高光谱(HS)图像能够描述材料光谱特征中的细微差异,但受现有技术和预算限制,其空间分辨率较低。在本文中,我们提出了一种有前景的基于深度先验的高光谱全色锐化方法(HPDP),用于将低分辨率(LR)高光谱图像与高分辨率(HR)全色(PAN)图像进行融合。与现有方法不同,我们首次基于结构张量(ST)矩阵的较大特征值重新定义了光谱响应函数(SRF),这更符合高光谱成像的特点。然后,我们引入HFNet以逐波段方式捕捉上采样后的高光谱图像和全色图像之间的高频深度残差映射。具体而言,将学习到的高频残差映射注入到结构变换后的高光谱图像中,这些图像是提取的深度先验,在西尔维斯特方程中作为额外约束来估计最终的高分辨率高光谱图像。对比分析验证了所提出的HPDP方法通过确保在空间和光谱域对所有类型数据集都具有更高质量,呈现出卓越的全色锐化性能。此外,HFNet基于多光谱(MS)图像在高频域进行训练,克服了深度神经网络(DNN)对不同传感器采集的数据集的敏感性以及高光谱全色锐化中训练样本不足的困难。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验