Suppr超能文献

蚊虫-真菌相互作用与抗真菌免疫。

Mosquito-fungus interactions and antifungal immunity.

机构信息

Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA.

Missouri Southern State University, Biology Department, Reynolds Hall 220, 3950 E. Newman Rd., Joplin, MO, 64801-1595, USA.

出版信息

Insect Biochem Mol Biol. 2019 Aug;111:103182. doi: 10.1016/j.ibmb.2019.103182. Epub 2019 Jun 29.

Abstract

The mosquito immune system has evolved in the presence of continuous encounters with fungi that range from food to foes. Herein, we review the field of mosquito-fungal interactions, providing an overview of current knowledge and topics of interest. Mosquitoes encounter fungi in their aquatic and terrestrial habitats. Mosquito larvae are exposed to fungi on plant detritus, within the water column, and at the water surface. Adult mosquitoes are exposed to fungi during indoor and outdoor resting, blood and sugar feeding, mating, and oviposition. Fungi enter the mosquito body through different routes, including ingestion and through active or passive breaches in the cuticle. Oral uptake of fungi can be beneficial to mosquitoes, as yeasts hold nutritional value and support larval development. However, ingestion of or surface contact with fungal entomopathogens leads to colonization of the mosquito with often lethal consequences to the host. The mosquito immune system recognizes fungi and mounts cellular and humoral immune responses in the hemocoel, and possibly epithelial immune responses in the gut. These responses are regulated transcriptionally through multiple signal transduction pathways. Proteolytic protease cascades provide additional regulation of antifungal immunity. Together, these immune responses provide an efficient barrier to fungal infections, which need to be overcome by entomopathogens. Therefore, fungi constitute an excellent tool to examine the molecular underpinnings of mosquito immunity and to identify novel antifungal peptides. In addition, recent advances in mycobiome analyses can now be used to examine the contribution of fungi to various mosquito traits, including vector competence.

摘要

蚊子的免疫系统在不断遭遇真菌的环境中进化,这些真菌从食物到天敌种类繁多。在此,我们综述了蚊子与真菌相互作用的领域,提供了该领域当前知识和关注主题的概述。蚊子在水生和陆地栖息地接触真菌。蚊子幼虫在植物碎屑、水柱中和水面上接触真菌。成蚊在室内和室外休息、血食和糖食、交配和产卵时接触真菌。真菌通过不同途径进入蚊子体内,包括摄入和通过表皮的主动或被动破裂。真菌的口服摄入对蚊子可能有益,因为酵母具有营养价值,并支持幼虫发育。然而,摄入或与真菌昆虫病原体表面接触会导致蚊子被定植,通常对宿主有致命后果。蚊子免疫系统识别真菌,并在血腔中启动细胞和体液免疫反应,在肠道中可能还会启动上皮免疫反应。这些反应通过多个信号转导途径在转录水平上受到调控。蛋白水解酶级联反应为抗真菌免疫提供了额外的调节。总之,这些免疫反应为抵御真菌感染提供了有效的屏障,而昆虫病原体则需要克服这些屏障。因此,真菌是研究蚊子免疫分子基础和鉴定新型抗真菌肽的绝佳工具。此外,最近在真菌组分析方面的进展现在可用于研究真菌对各种蚊子特征(包括媒介能力)的贡献。

相似文献

1
Mosquito-fungus interactions and antifungal immunity.
Insect Biochem Mol Biol. 2019 Aug;111:103182. doi: 10.1016/j.ibmb.2019.103182. Epub 2019 Jun 29.
2
Mosquito Immunobiology: The Intersection of Vector Health and Vector Competence.
Annu Rev Entomol. 2018 Jan 7;63:145-167. doi: 10.1146/annurev-ento-010715-023530.
3
Host-Environment Interplay Shapes Fungal Diversity in Mosquitoes.
mSphere. 2021 Oct 27;6(5):e0064621. doi: 10.1128/mSphere.00646-21. Epub 2021 Sep 29.
4
Antifungal immune responses in mosquitoes (Diptera: Culicidae): A review.
J Invertebr Pathol. 2021 Jan;178:107505. doi: 10.1016/j.jip.2020.107505. Epub 2020 Nov 22.
5
Peptidoglycan Recognition Proteins (PGRPs) Modulates Mosquito Resistance to Fungal Entomopathogens in a Fungal-Strain Specific Manner.
Front Cell Infect Microbiol. 2020 Jan 23;9:465. doi: 10.3389/fcimb.2019.00465. eCollection 2019.
7
Developmental and comparative perspectives on mosquito immunity.
Dev Comp Immunol. 2020 Feb;103:103458. doi: 10.1016/j.dci.2019.103458. Epub 2019 Aug 1.
8
Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system.
PLoS Negl Trop Dis. 2018 Apr 23;12(4):e0006433. doi: 10.1371/journal.pntd.0006433. eCollection 2018 Apr.
10
Entomopathogenic fungi for mosquito control: a review.
J Insect Sci. 2004;4:19. doi: 10.1093/jis/4.1.19. Epub 2004 Jun 23.

引用本文的文献

1
Larvicidal and Immunomodulatory Effects of Conidia and Blastospores of and in .
J Fungi (Basel). 2025 Aug 21;11(8):608. doi: 10.3390/jof11080608.
2
Evaluation of mycoparasitic and entomopathogenic as potential bioinsecticides against the dengue vector, .
Front Cell Infect Microbiol. 2025 Apr 10;15:1502579. doi: 10.3389/fcimb.2025.1502579. eCollection 2025.
3
Decoding arthropod vector immunology through bona fide pathogens.
Trends Parasitol. 2025 May;41(5):351-360. doi: 10.1016/j.pt.2025.03.004. Epub 2025 Mar 25.
5
Would global warming bring an increase of invertebrate-associated cutaneous invasive fungal infections?
mBio. 2025 Mar 12;16(3):e0344724. doi: 10.1128/mbio.03447-24. Epub 2025 Feb 5.
6
Fungi from Anopheles darlingi Root, 1926, larval breeding sites in the Brazilian Amazon.
PLoS One. 2024 Dec 5;19(12):e0312624. doi: 10.1371/journal.pone.0312624. eCollection 2024.
10
Recombinant expressing toxin Cyt1Aa: a promising approach for enhancing mosquito control.
Microbiol Spectr. 2024 Jul 2;12(7):e0379223. doi: 10.1128/spectrum.03792-23. Epub 2024 May 29.

本文引用的文献

1
Transgenic rapidly kills mosquitoes in a malaria-endemic region of Burkina Faso.
Science. 2019 May 31;364(6443):894-897. doi: 10.1126/science.aaw8737.
2
The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response.
Dev Comp Immunol. 2019 Jun;95:1-9. doi: 10.1016/j.dci.2018.12.010. Epub 2018 Dec 22.
3
Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae.
PLoS Negl Trop Dis. 2018 Jul 6;12(7):e0006638. doi: 10.1371/journal.pntd.0006638. eCollection 2018 Jul.
5
Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system.
PLoS Negl Trop Dis. 2018 Apr 23;12(4):e0006433. doi: 10.1371/journal.pntd.0006433. eCollection 2018 Apr.
7
The mosquito holobiont: fresh insight into mosquito-microbiota interactions.
Microbiome. 2018 Mar 20;6(1):49. doi: 10.1186/s40168-018-0435-2.
8
Nectar yeasts: a natural microcosm for ecology.
Yeast. 2018 Jun;35(6):417-423. doi: 10.1002/yea.3311. Epub 2018 Apr 15.
10
Mosquito Immunobiology: The Intersection of Vector Health and Vector Competence.
Annu Rev Entomol. 2018 Jan 7;63:145-167. doi: 10.1146/annurev-ento-010715-023530.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验