Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin 53706; email:
Division of Biology, Kansas State University, Manhattan, Kansas 66506; email:
Annu Rev Entomol. 2018 Jan 7;63:145-167. doi: 10.1146/annurev-ento-010715-023530.
As holometabolous insects that occupy distinct aquatic and terrestrial environments in larval and adult stages and utilize hematophagy for nutrient acquisition, mosquitoes are subjected to a wide variety of symbiotic interactions. Indeed, mosquitoes play host to endosymbiotic, entomopathogenic, and mosquito-borne organisms, including protozoa, viruses, bacteria, fungi, fungal-like organisms, and metazoans, all of which trigger and shape innate infection-response capacity. Depending on the infection or interaction, the mosquito may employ, for example, cellular and humoral immune effectors for septic infections in the hemocoel, humoral infection responses in the midgut lumen, and RNA interference and programmed cell death for intracellular pathogens. These responses often function in concert, regardless of the infection type, and provide a robust front to combat infection. Mosquito-borne pathogens and entomopathogens overcome these immune responses, employing avoidance or suppression strategies. Burgeoning methodologies are capitalizing on this concerted deployment of immune responses to control mosquito-borne disease.
作为完全变态的昆虫,它们在幼虫和成虫阶段分别占据独特的水生和陆生环境,并通过吸血来获取营养,蚊子受到了各种各样的共生相互作用的影响。事实上,蚊子是内共生体、昆虫病原和蚊媒病原体的宿主,包括原生动物、病毒、细菌、真菌、真菌样生物和后生动物,所有这些都引发并塑造了先天的感染反应能力。根据感染或相互作用的不同,蚊子可能会采用细胞和体液免疫效应器来应对血腔中的败血症感染,采用体液感染反应来应对中肠腔,以及采用 RNA 干扰和程序性细胞死亡来应对细胞内病原体。这些反应通常协同作用,无论感染类型如何,为对抗感染提供了强大的防线。蚊媒病原体和昆虫病原克服了这些免疫反应,采用了回避或抑制策略。新兴的方法学利用这种协同的免疫反应来控制蚊媒疾病。