Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159 07743, Jena, Germany.
School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
Environ Microbiol. 2019 Oct;21(10):3780-3795. doi: 10.1111/1462-2920.14728. Epub 2019 Jul 31.
The release of abiotic methane from marine seeps into the atmosphere is a major source of this potent greenhouse gas. Methanotrophic microorganisms in methane seeps use methane as carbon and energy source, thus significantly mitigating global methane emissions. Here, we investigated microbial methane oxidation at the sediment-water interface of a shallow marine methane seep. Metagenomics and metaproteomics, combined with C-methane stable isotope probing, demonstrated that various members of the gammaproteobacterial family Methylococcaceae were the key players for methane oxidation, catalysing the first reaction step to methanol. We observed a transfer of carbon to methanol-oxidizing methylotrophs of the betaproteobacterial family Methylophilaceae, suggesting an interaction between methanotrophic and methylotrophic microorganisms that allowed for rapid methane oxidation. From our microcosms, we estimated methane oxidation rates of up to 871 nmol of methane per gram sediment per day. This implies that more than 50% of methane at the seep is removed by microbial oxidation at the sediment-water interface, based on previously reported in situ methane fluxes. The organic carbon produced was further assimilated by different heterotrophic microbes, demonstrating that the methane-oxidizing community supported a complex trophic network. Our results provide valuable eco-physiological insights into this specialized microbial community performing an ecosystem function of global relevance.
海洋渗漏中的非生物甲烷释放到大气中是这种强效温室气体的主要来源。甲烷渗漏中的甲烷营养微生物将甲烷作为碳和能源来源,从而显著减轻了全球甲烷排放。在这里,我们研究了浅层海洋甲烷渗漏沉积物-水界面处的微生物甲烷氧化作用。宏基因组学和宏蛋白质组学,结合 C-甲烷稳定同位素探测,表明γ变形菌科的各种成员是甲烷氧化的关键参与者,催化了甲醇形成的第一步反应。我们观察到碳向β变形菌科甲基杆菌科的甲醇氧化甲基营养菌的转移,表明甲烷营养微生物和甲基营养微生物之间存在相互作用,从而实现了快速的甲烷氧化。根据我们的微宇宙实验,我们估计每克沉积物每天的甲烷氧化速率高达 871nmol。这意味着,基于先前报道的原位甲烷通量,渗漏处的甲烷有 50%以上是通过微生物在沉积物-水界面的氧化作用去除的。产生的有机碳进一步被不同的异养微生物同化,这表明甲烷氧化群落支持复杂的营养网络。我们的研究结果为这个执行全球相关生态系统功能的特殊微生物群落提供了有价值的生态生理学见解。