Suppr超能文献

葡萄球菌蛋白分泌与包膜装配。

Staphylococcal Protein Secretion and Envelope Assembly.

机构信息

Department of Microbiology, University of Chicago, Chicago, IL 60637.

出版信息

Microbiol Spectr. 2019 Jul;7(4). doi: 10.1128/microbiolspec.GPP3-0070-2019.

Abstract

The highly cross-linked peptidoglycan represents the rigid layer of the bacterial envelope and protects bacteria from osmotic lysis. In Gram-positive bacteria, peptidoglycan also functions as a scaffold for the immobilization of capsular polysaccharide, wall teichoic acid (WTA), and surface proteins. This chapter captures recent development on the assembly of the envelope of including mechanisms accounting for immobilization of molecules to peptidoglycan as well as hydrolysis of peptidoglycan for the specific release of bound molecules, facilitation of protein secretion across the envelope and cell division. Peptidoglycan, WTA and capsular polysaccharide are directly synthesized onto undecaprenol. Surface proteins are anchored by Sortase A, a membrane-embedded transpeptidase that scans secreted polypeptides for the C-terminal LPXTG motif of sorting signals. The resulting acyl enzyme intermediate is resolved by lipid II, the undecaprenol-bound peptidoglycan precursor. While these pathways share membrane diffusible undecaprenol, assembly of these molecules occurs either at the cross-walls or the cell poles. In , the cross-wall represents the site of peptidoglycan synthesis which is eventually split to complete the cell cycle yielding newly divided daughter cells. Peptidoglycan synthesized at the cross-wall is initially devoid of WTA. Conversely, lipoteichoic acid (LTA) synthesis which does not require bactoprenol is seemingly restricted to septal membranes. Similarly, distinguishes two types of surface protein precursors. Polypeptides with canonical signal peptides are deposited at the cell poles, whereas precursors with conserved YSIRK-GXXS motif signal peptides traffic to the cross-wall. A model for protein trafficking in the envelope and uneven distribution of teichoic acids is discussed.

摘要

高度交联的肽聚糖代表了细菌包膜的刚性层,可防止细菌渗透裂解。在革兰氏阳性菌中,肽聚糖还作为荚膜多糖、壁磷壁酸 (WTA) 和表面蛋白固定化的支架。本章介绍了包括负责将分子固定在肽聚糖上的机制以及肽聚糖水解以特异性释放结合分子、促进蛋白质穿过包膜分泌和细胞分裂的最新进展。肽聚糖、WTA 和荚膜多糖直接在十一烯基磷酸上合成。表面蛋白通过 Sortase A 锚定,Sortase A 是一种膜嵌入转肽酶,可扫描分泌的多肽以识别分选信号的 C 末端 LPXTG 基序。所得酰基酶中间产物由脂质 II 解析,脂质 II 是十一烯基磷酸结合的肽聚糖前体。虽然这些途径共享膜扩散性十一烯基磷酸,但这些分子的组装要么发生在细胞壁上,要么发生在细胞极上。在革兰氏阳性菌中,细胞壁代表肽聚糖合成的部位,最终分裂完成细胞周期,产生新分裂的子细胞。在细胞壁上合成的肽聚糖最初不含 WTA。相反,不需要 bactoprenol 的脂磷壁酸 (LTA) 合成似乎仅限于隔膜。同样,革兰氏阳性菌区分了两种类型的表面蛋白前体。具有经典信号肽的多肽沉积在细胞极上,而具有保守 YSIRK-GXXS 基序信号肽的前体则在细胞壁上运输。讨论了包膜中蛋白质运输和磷壁酸不均匀分布的模型。

相似文献

1
Staphylococcal Protein Secretion and Envelope Assembly.
Microbiol Spectr. 2019 Jul;7(4). doi: 10.1128/microbiolspec.GPP3-0070-2019.
2
Processing of LtaS restricts LTA assembly and YSIRK preprotein trafficking into cross-walls.
mBio. 2024 Feb 14;15(2):e0285223. doi: 10.1128/mbio.02852-23. Epub 2024 Jan 4.
3
Spatial regulation of protein A in Staphylococcus aureus.
Mol Microbiol. 2021 Aug;116(2):589-605. doi: 10.1111/mmi.14734. Epub 2021 Jun 14.
4
Septal secretion of protein A in requires SecA and lipoteichoic acid synthesis.
Elife. 2018 May 14;7:e34092. doi: 10.7554/eLife.34092.
5
Sortases, Surface Proteins, and Their Roles in Disease and Vaccine Development.
Microbiol Spectr. 2019 Jan;7(1). doi: 10.1128/microbiolspec.PSIB-0004-2018.
8
The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes.
J Biol Chem. 2014 May 30;289(22):15680-90. doi: 10.1074/jbc.M114.567669. Epub 2014 Apr 21.
9
Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus.
Mol Microbiol. 2001 Jun;40(5):1049-57. doi: 10.1046/j.1365-2958.2001.02411.x.
10
GpsB Coordinates Cell Division and Cell Surface Decoration by Wall Teichoic Acids in Staphylococcus aureus.
Microbiol Spectr. 2022 Jun 29;10(3):e0141322. doi: 10.1128/spectrum.01413-22. Epub 2022 Jun 1.

引用本文的文献

1
Staphylococcus aureus as an emerging model to study bacterial cell division.
J Biol Chem. 2025 Jun 6;301(7):110343. doi: 10.1016/j.jbc.2025.110343.
2
How do spherical bacteria regulate cell division?
Biochem Soc Trans. 2025 Apr 17;53(2):447-60. doi: 10.1042/BST20240956.
3
A SecA-associated protease modulates the extent of surface display of staphylococcal protein A.
J Bacteriol. 2025 Apr 17;207(4):e0052224. doi: 10.1128/jb.00522-24. Epub 2025 Mar 26.
4
Structure Elucidation of the Daptomycin Products Generated upon Heterologous Expression of the Daptomycin Resistance Gene Cluster .
ACS Infect Dis. 2024 Dec 13;10(12):4271-4278. doi: 10.1021/acsinfecdis.4c00637. Epub 2024 Dec 3.
5
Type VII secretion system extracellular protein B targets STING to evade host anti- immunity.
Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2402764121. doi: 10.1073/pnas.2402764121. Epub 2024 May 21.
6
Anchoring surface proteins to the bacterial cell wall by sortase enzymes: how it started and what we know now.
Curr Opin Microbiol. 2021 Apr;60:73-79. doi: 10.1016/j.mib.2021.01.013. Epub 2021 Feb 18.
7
β-Lactams against the Fortress of the Gram-Positive Bacterium.
Chem Rev. 2021 Mar 24;121(6):3412-3463. doi: 10.1021/acs.chemrev.0c01010. Epub 2020 Dec 29.
8
Constructing and deconstructing the bacterial cell wall.
Protein Sci. 2020 Mar;29(3):629-646. doi: 10.1002/pro.3737. Epub 2019 Nov 20.

本文引用的文献

1
Septal secretion of protein A in requires SecA and lipoteichoic acid synthesis.
Elife. 2018 May 14;7:e34092. doi: 10.7554/eLife.34092.
2
Protein export through the bacterial Sec pathway.
Nat Rev Microbiol. 2017 Jan;15(1):21-36. doi: 10.1038/nrmicro.2016.161. Epub 2016 Nov 28.
3
A Putative Bacterial ABC Transporter Circumvents the Essentiality of Signal Peptidase.
mBio. 2016 Sep 6;7(5):e00412-16. doi: 10.1128/mBio.00412-16.
4
Peptidoglycan-linked protein A promotes T cell-dependent antibody expansion during Staphylococcus aureus infection.
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5718-23. doi: 10.1073/pnas.1524267113. Epub 2016 May 2.
6
Staphylococcal manipulation of host immune responses.
Nat Rev Microbiol. 2015 Sep;13(9):529-43. doi: 10.1038/nrmicro3521.
8
Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance.
PLoS Pathog. 2015 May 7;11(5):e1004891. doi: 10.1371/journal.ppat.1004891. eCollection 2015 May.
9
A putative cro-like repressor contributes to arylomycin resistance in Staphylococcus aureus.
Antimicrob Agents Chemother. 2015;59(6):3066-74. doi: 10.1128/AAC.04597-14. Epub 2015 Mar 9.
10
Staphylococcus aureus infection induces protein A-mediated immune evasion in humans.
J Exp Med. 2014 Nov 17;211(12):2331-9. doi: 10.1084/jem.20141404. Epub 2014 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验