Suppr超能文献

rDock 作为一种肽-蛋白对接工具的广泛基准测试。

Extensive benchmark of rDock as a peptide-protein docking tool.

机构信息

Nostrum Biodiscovery, Carrer Jordi Girona 29, Nexus II D128, 08034, Barcelona, Spain.

出版信息

J Comput Aided Mol Des. 2019 Jul;33(7):613-626. doi: 10.1007/s10822-019-00212-0. Epub 2019 Jul 3.

Abstract

Peptide-protein interactions are ubiquitous in living cells and essential to a wide range of biological processes, as well as pathologies such as cancer or cardiovascular disease. Yet, obtaining reliable binding mode predictions in peptide-protein docking remains a great challenge for most computational docking programs. The main goal of this study was to assess the performance of the small molecule docking program rDock in comparison to other widely used small molecule docking programs, using 100 peptide-protein systems with peptides ranging from 2 to 12 residues. As we used two large independent benchmark sets previously published for other small-molecule docking programs (AutoDockVina benchmark and LEADSPEP), the performance of rDock could directly be compared to the performances of AutoDockVina, Surflex, GOLD, and Glide, as well as to the peptide docking protocol PIPER-FlexPepDock and the webserver HPepDock. Our benchmark reveals that rDock can dock the 100 peptides with an overall backbone RMSD below 2.5 Å in 58.5% of the cases (76% for the 47 systems of the AutoDockVina benchmark set and 43% for the 53 systems of the LEADSPEP benchmark set). More specifically, rDock docks up to 11-residue peptides with a backbone RMSD below 2.5 Å in 60.75% of the cases. rDock displays higher accuracy than most available small molecule docking programs for 6-10-residue peptides and can sometimes perform similarly to the peptide docking tool, especially at a high level of exhaustiveness (100 or 150 runs). Its performance, as is the case for many other unguided small molecule docking tools, is compromised when the peptides adopt secondary structures upon binding. However, our analyses suggest that rDock could be used for predicting how medium-sized biologically relevant peptides bind to their respective protein targets when the latter bind in an extended mode.

摘要

肽-蛋白相互作用在活细胞中普遍存在,对广泛的生物过程以及癌症或心血管疾病等病理学至关重要。然而,对于大多数计算对接程序来说,获得可靠的肽-蛋白对接结合模式预测仍然是一个巨大的挑战。本研究的主要目的是评估小分子对接程序 rDock 的性能,与其他广泛使用的小分子对接程序相比,使用范围从 2 到 12 个残基的 100 个肽-蛋白系统。由于我们使用了之前为其他小分子对接程序(AutoDockVina 基准和 LEADSPEP)发布的两个大型独立基准集,因此 rDock 的性能可以直接与 AutoDockVina、Surflex、GOLD 和 Glide 的性能进行比较,以及肽对接协议 PIPER-FlexPepDock 和网络服务器 HPepDock。我们的基准测试表明,rDock 可以对接 100 个肽,在 58.5%的情况下(AutoDockVina 基准集的 47 个系统中有 76%,LEADSPEP 基准集的 53 个系统中有 43%),整体骨架 RMSD 低于 2.5 Å。具体来说,rDock 可以对接骨架 RMSD 低于 2.5 Å 的 11 个残基肽,在 60.75%的情况下。rDock 对于 6-10 个残基肽的准确性高于大多数可用的小分子对接程序,并且在某些情况下可以与肽对接工具表现得相似,尤其是在高穷尽水平(100 或 150 次运行)。当肽结合时采用二级结构时,其性能与许多其他无指导小分子对接工具一样受到影响。然而,我们的分析表明,当后者以扩展模式结合时,rDock 可用于预测中等大小的生物相关肽与各自的蛋白质靶标结合的方式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验