Suppr超能文献

通过基于知识的和 MM-GBSA 打分函数的结合进行构象聚类和重新打分来改进蛋白-肽对接结果。

Improving Protein-Peptide Docking Results via Pose-Clustering and Rescoring with a Combined Knowledge-Based and MM-GBSA Scoring Function.

机构信息

School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.

出版信息

J Chem Inf Model. 2020 Apr 27;60(4):2377-2387. doi: 10.1021/acs.jcim.0c00058. Epub 2020 Apr 16.

Abstract

Protein-peptide docking, which predicts the complex structure between a protein and a peptide, is a valuable computational tool in peptide therapeutics development and the mechanistic investigation of peptides involved in cellular processes. Although current peptide docking approaches are often able to sample near-native peptide binding modes, correctly identifying those near-native modes from decoys is still challenging because of the extremely high complexity of the peptide binding energy landscape. In this study, we have developed an efficient postdocking rescoring protocol using a combined scoring function of knowledge-based ITScorePP potentials and physics-based MM-GBSA energies. Tested on five benchmark/docking test sets, our postdocking strategy showed an overall significantly better performance in binding mode prediction and score-rmsd correlation than original docking approaches. Specifically, our postdocking protocol outperformed original docking approaches with success rates of 15.8 versus 10.5% for pepATTRACT on the Global_57 benchmark, 5.3 versus 5.3% for CABS-dock on the Global_57 benchmark, 17.0 versus 11.3% for FlexPepDock on the LEADS-PEP data set, 40.3 versus 33.9% for HPEPDOCK on the Local_62 benchmark, and 64.2 versus 52.8% for HPEPDOCK on the LEADS-PEP data set when the top prediction was considered. These results demonstrated the efficacy and robustness of our postdocking protocol.

摘要

蛋白质-肽对接预测蛋白质与肽之间的复合物结构,是肽治疗开发和细胞过程中涉及的肽的机制研究的有价值的计算工具。尽管当前的肽对接方法通常能够采样接近天然的肽结合模式,但由于肽结合能景观的极高复杂性,正确识别这些接近天然的模式仍然具有挑战性。在这项研究中,我们使用基于知识的 ITScorePP 势能和基于物理的 MM-GBSA 能量的组合评分函数开发了一种有效的对接后重新评分方案。在五个基准/对接测试集中进行测试,我们的对接后策略在结合模式预测和得分-rmsd 相关性方面的整体性能明显优于原始对接方法。具体来说,我们的对接后协议在 pepATTRACT 上的成功率为 15.8%,而原始对接方法为 10.5%,在 Global_57 基准上的 CABS-dock 为 5.3%,而原始对接方法为 5.3%,在 LEADS-PEP 数据集上的 FlexPepDock 为 17.0%,而原始对接方法为 11.3%,在 Local_62 基准上的 HPEPDOCK 为 40.3%,而原始对接方法为 33.9%,在 LEADS-PEP 数据集上的 HPEPDOCK 为 64.2%,而原始对接方法为 52.8%,当考虑最佳预测时。这些结果证明了我们对接后协议的有效性和稳健性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验