Interventional Radiology, Imagerie Interventionnelle, Nouvel Hôpital Civil, University Hospital of Strasbourg, 1, Place de l'Hôpital, B.P. 426, 67091, Strasbourg Cedex, France.
Department of Radiology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, NR4 7UY, UK.
Eur Spine J. 2020 Jul;29(7):1580-1589. doi: 10.1007/s00586-019-06054-6. Epub 2019 Jul 2.
To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs).
This prospective parallel randomised open trial compared the trans-pedicular access phase of percutaneous vertebroplasty across two groups of 10 patients, electronically randomised, with symptomatic single-level VCFs. Trocar insertion was performed using AR/AI-guidance with motion compensation in Group A, and standard fluoroscopy in Group B. The primary endpoint was technical feasibility in Group A. Secondary outcomes included the comparison of Groups A and B in terms of accuracy of trocar placement (distance between planned/actual trajectory on sagittal/coronal fluoroscopic images); complications; time for trocar deployment; and radiation dose/fluoroscopy time.
Technical feasibility in Group A was 100%. Accuracy in Group A was 1.68 ± 0.25 mm (skin entry point), and 1.02 ± 0.26 mm (trocar tip) in the sagittal plane, and 1.88 ± 0.28 mm (skin entry point) and 0.86 ± 0.17 mm (trocar tip) in the coronal plane, without any significant difference compared to Group B (p > 0.05). No complications were observed in the entire population. Time for trocar deployment was significantly longer in Group A (642 ± 210 s) than in Group B (336 ± 60 s; p = 0.001). Dose-area product and fluoroscopy time were significantly lower in Group A (182.6 ± 106.7 mGy cm and 5.2 ± 2.6 s) than in Group B (367.8 ± 184.7 mGy cm and 10.4 ± 4.1 s; p = 0.025 and 0.005), respectively.
AR/AI-guided percutaneous vertebroplasty appears feasible, accurate and safe, and facilitates lower patient radiation exposure compared to standard fluoroscopic guidance. These slides can be retrieved under Electronic Supplementary Material.
评估一种新型导航工具的技术可行性、准确性、安全性和患者辐射暴露情况,该导航工具整合了增强现实(AR)和人工智能(AI)技术,用于经皮椎体成形术治疗椎体压缩性骨折(VCF)患者。
这是一项前瞻性平行随机开放试验,比较了两组各 10 例症状性单节段 VCF 患者经皮椎体成形术的经皮椎弓根入路阶段,两组患者均采用电子随机分组,其中 A 组采用带运动补偿的 AR/AI 引导,B 组采用标准透视引导。主要终点是 A 组的技术可行性。次要结局包括比较两组患者在以下方面的差异:套管放置的准确性(矢状面/冠状面透视图像上计划/实际轨迹之间的距离);并发症;套管部署时间;以及辐射剂量/透视时间。
A 组的技术可行性为 100%。A 组在矢状面的套管入口点和套管尖端的准确性分别为 1.68±0.25mm 和 1.02±0.26mm,在冠状面的套管入口点和套管尖端的准确性分别为 1.88±0.28mm 和 0.86±0.17mm,与 B 组相比无显著差异(p>0.05)。在整个研究人群中未观察到任何并发症。A 组套管部署时间明显长于 B 组(642±210s 比 336±60s;p=0.001)。A 组剂量面积产品和透视时间明显低于 B 组(182.6±106.7mGy cm 和 5.2±2.6s 比 367.8±184.7mGy cm 和 10.4±4.1s;p=0.025 和 0.005)。
与标准透视引导相比,AR/AI 引导经皮椎体成形术具有可行性、准确性和安全性,可降低患者的辐射暴露。这些幻灯片可以在电子补充材料中检索到。