Suppr超能文献

影像组学建模中的可重复性和泛化性:放射学和统计学视角下的可能策略。

Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statistical Perspectives.

机构信息

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.

Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.

出版信息

Korean J Radiol. 2019 Jul;20(7):1124-1137. doi: 10.3348/kjr.2018.0070.

Abstract

Radiomics, which involves the use of high-dimensional quantitative imaging features for predictive purposes, is a powerful tool for developing and testing medical hypotheses. Radiologic and statistical challenges in radiomics include those related to the reproducibility of imaging data, control of overfitting due to high dimensionality, and the generalizability of modeling. The aims of this review article are to clarify the distinctions between radiomics features and other omics and imaging data, to describe the challenges and potential strategies in reproducibility and feature selection, and to reveal the epidemiological background of modeling, thereby facilitating and promoting more reproducible and generalizable radiomics research.

摘要

放射组学涉及使用高维定量成像特征进行预测,是开发和检验医学假说的有力工具。放射组学中的放射学和统计学挑战包括与成像数据的可重复性、由于高维数引起的过拟合控制以及建模的泛化能力相关的挑战。本文综述的目的是阐明放射组学特征与其他组学和成像数据之间的区别,描述在可重复性和特征选择方面的挑战和潜在策略,并揭示建模的流行病学背景,从而促进更具可重复性和可推广性的放射组学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38f6/6609433/bbf336cbe026/kjr-20-1124-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验