Yang Shuo, Bie Yifan, Zhao Lei, Luan Kun, Li Xingchao, Chi Yanheng, Bian Zhen, Zhang Deqing, Pang Guodong, Zhong Hai
Department of Radiology, the Second Hospital of Shandong University, Jinan, China.
Quant Imaging Med Surg. 2025 Sep 1;15(9):7922-7934. doi: 10.21037/qims-2025-238. Epub 2025 Aug 18.
Deep learning image reconstruction (DLIR) can enhance image quality and lower image dose, yet its impact on radiomics features (RFs) remains unclear. This study aimed to compare the effects of DLIR and conventional adaptive statistical iterative reconstruction-Veo (ASIR-V) algorithms on the robustness of RFs using standard and low-dose abdominal clinical computed tomography (CT) scans.
A total of 54 patients with hepatic masses who underwent abdominal contrast-enhanced CT scans were retrospectively analyzed. The raw data of standard dose in the venous phase and low dose in the delayed phase were reconstructed using five reconstruction settings, including ASIR-V at 30% (ASIR-V30%) and 70% (ASIR-V70%) levels, and DLIR at low (DLIR-L), medium (DLIR-M), and high (DLIR-H) levels. The PyRadiomics platform was used for the extraction of RFs in 18 regions of interest (ROIs) in different organs or tissues. The consistency of RFs among different algorithms and different strength levels was tested by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). The consistency of RFs among different strength levels of the same algorithm and clinically comparable levels across algorithms was evaluated by intraclass correlation coefficient (ICC). Robust features were identified by Kruskal-Wallis and Mann-Whitney test.
Among the five reconstruction methods, the mean CV and QCD in the standard-dose group were 0.364 and 0.213, respectively, and the corresponding values were 0.444 and 0.245 in the low-dose group. The mean ICC values between ASIR-V 30% and 70%, DLIR-L and M, DLIR-M and H, DLIR-L and H, ASIR-V30% and DLIR-M, and ASIR-V70% and DLIR-H were 0.672, 0.734, 0.756, 0.629, 0.724, and 0.651, respectively, in the standard-dose group, and the corresponding values were 0.500, 0.567, 0.700, 0.474, 0.499, and 0.650 in the low-dose group. The ICC values between DLIR-M and H under low-dose conditions were even higher than those of ASIR-V30% and -V70% under standard dose conditions. Among the five reconstruction settings, averages of 14.0% (117/837) and 10.3% (86/837) of RFs across 18 ROIs exhibited robustness under standard-dose and low-dose conditions, respectively. Some 23.1% (193/837) of RFs demonstrated robustness between the low-dose DLIR-M and H groups, which was higher than the 21.0% (176/837) observed in the standard-dose ASIR-V30% and -V70% groups.
Most of the RFs lacked reproducibility across algorithms and energy levels. However, DLIR at medium (M) and high (H) levels significantly improved RFs consistency and robustness, even at reduced doses.
深度学习图像重建(DLIR)可提高图像质量并降低图像剂量,但其对放射组学特征(RFs)的影响尚不清楚。本研究旨在使用标准剂量和低剂量腹部临床计算机断层扫描(CT),比较DLIR和传统自适应统计迭代重建-Veo(ASIR-V)算法对RFs稳健性的影响。
回顾性分析54例接受腹部增强CT扫描的肝肿块患者。使用五种重建设置重建静脉期标准剂量和延迟期低剂量的原始数据,包括30%(ASIR-V30%)和70%(ASIR-V70%)水平的ASIR-V,以及低(DLIR-L)、中(DLIR-M)和高(DLIR-H)水平的DLIR。使用PyRadiomics平台在不同器官或组织的18个感兴趣区域(ROI)中提取RFs。通过变异系数(CV)和四分位数离散系数(QCD)测试不同算法和不同强度水平之间RFs的一致性。通过组内相关系数(ICC)评估同一算法不同强度水平之间以及各算法临床可比水平之间RFs的一致性。通过Kruskal-Wallis和Mann-Whitney检验识别稳健特征。
在五种重建方法中,标准剂量组的平均CV和QCD分别为0.364和0.213,低剂量组的相应值为0.444和0.245。标准剂量组中,ASIR-V 30%与70%、DLIR-L与M、DLIR-M与H、DLIR-L与H、ASIR-V30%与DLIR-M以及ASIR-V70%与DLIR-H之间的平均ICC值分别为0.672、0.734、0.756、0.629、0.724和0.651,低剂量组的相应值为0.500、0.567,、0.700、0.474、0.499和0.650。低剂量条件下DLIR-M与H之间的ICC值甚至高于标准剂量条件下ASIR-V30%和-V70%的ICC值。在五种重建设置中,18个ROI的RFs在标准剂量和低剂量条件下分别有14.0%(117/837)和10.3%(86/837)表现出稳健性。约23.1%(193/837)的RFs在低剂量DLIR-M和H组之间表现出稳健性,高于标准剂量ASIR-V30%和-V70%组中观察到的21.0%(176/837)。
大多数RFs在算法和能量水平之间缺乏可重复性。然而,中(M)和高(H)水平的DLIR显著提高了RFs的一致性和稳健性,即使在剂量降低的情况下也是如此。