Suppr超能文献

火星沉积物低生物量模拟中的生物特征检测。

Detectability of biosignatures in a low-biomass simulation of martian sediments.

机构信息

UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.

School of Engineering, Bioimaging Facility, University of Edinburgh, Edinburgh, UK.

出版信息

Sci Rep. 2019 Jul 4;9(1):9706. doi: 10.1038/s41598-019-46239-z.

Abstract

Discovery of a remnant habitable environment by the Mars Science Laboratory in the sedimentary record of Gale Crater has reinvigorated the search for evidence of martian life. In this study, we used a simulated martian mudstone material, based on data from Gale Crater, that was inoculated and cultured over several months and then dried and pressed. The simulated mudstone was analysed with a range of techniques to investigate the detectability of biosignatures. Cell counting and DNA extraction showed a diverse but low biomass microbial community that was highly dispersed. Pellets were analysed with bulk Elemental Analysis - Isotope Ratio Mass Spectrometry (EA-IRMS), high-resolution Laser-ablation Ionisation Mass Spectrometry (LIMS), Raman spectroscopy and Fourier Transform InfraRed (FTIR) spectroscopy, which are all techniques of relevance to current and future space missions. Bulk analytical techniques were unable to differentiate between inoculated samples and abiotic controls, despite total levels of organic carbon comparable with that of the martian surface. Raman spectroscopy, FTIR spectroscopy and LIMS, which are high sensitivity techniques that provide chemical information at high spatial resolution, retrieved presumptive biosignatures but these remained ambiguous and the sedimentary matrix presented challenges for all techniques. This suggests challenges for detecting definitive evidence for life, both in the simulated lacustrine environment via standard microbiological techniques and in the simulated mudstone via analytical techniques with relevance to robotic missions. Our study suggests that multiple co-incident high-sensitivity techniques that can scan the same micrometre-scale spots are required to unambiguously detect biosignatures, but the spatial coverage of these techniques needs to be high enough not to miss individual cellular-scale structures in the matrix.

摘要

火星科学实验室在盖尔陨石坑的沉积记录中发现了一个残留的宜居环境,这重新激发了寻找火星生命证据的研究。在这项研究中,我们使用了一种基于盖尔陨石坑数据的模拟火星泥岩材料,该材料经过接种和培养数月,然后干燥和压制。使用一系列技术对模拟泥岩进行了分析,以研究生物特征的可检测性。细胞计数和 DNA 提取显示出一种多样化但生物量低的微生物群落,其分布高度分散。对颗粒进行了批量元素分析-同位素比质谱(EA-IRMS)、高分辨率激光烧蚀离子质谱(LIMS)、拉曼光谱和傅里叶变换红外(FTIR)光谱分析,这些都是当前和未来太空任务相关的技术。尽管总有机碳水平与火星表面相当,但批量分析技术无法区分接种样本和非生物对照。拉曼光谱、FTIR 光谱和 LIMS 是高灵敏度技术,可在高空间分辨率下提供化学信息,可获取推定的生物特征,但这些特征仍然模棱两可,且沉积基质对所有技术都提出了挑战。这表明,无论是通过标准微生物技术在模拟湖泊环境中,还是通过与机器人任务相关的分析技术在模拟泥岩中,都存在检测明确生命证据的挑战。我们的研究表明,需要多个同时具有高灵敏度的技术来扫描相同的微米级斑点,以明确检测生物特征,但这些技术的空间覆盖率需要足够高,以免错过基质中单个细胞级别的结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0041/6609699/05e0b785e53d/41598_2019_46239_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验