Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
J Am Chem Soc. 2010 Jul 21;132(28):9820-5. doi: 10.1021/ja103010b.
Examination of the nature of different bond activations along the same catalytic path is of general interest in chemistry and biology. In this report, we compare the physical nature of two sequential H-transfers in the same enzymatic reaction. Thymidylate synthase (TSase) catalyzes a complex reaction that involves many chemical transformations including two different C-H bond cleavages, a rate-limiting C-H-C hydride transfer and a non-rate-limiting C-H-O proton transfer. Although the large kinetic complexity imposes difficulties in studying the proton transfer catalyzed by TSase, we are able to experimentally extract the intrinsic kinetic isotope effects (KIEs) on both steps. In contrast with the hydride transfer, the intrinsic KIEs of the proton transfer are temperature dependent. The results are interpreted within the framework of the Marcus-like model. This interpretation suggests that TSase optimizes the donor-acceptor geometries for the slower and overall rate-limiting hydride transfer but not for the faster proton transfer.
研究同一催化路径中不同键活化的性质在化学和生物学中具有普遍意义。在本报告中,我们比较了同一酶反应中两个连续 H 转移的物理性质。胸苷酸合酶(TSase)催化涉及许多化学转化的复杂反应,包括两种不同的 C-H 键断裂、限速的 C-H-C 氢化物转移和非限速的 C-H-O 质子转移。尽管大的动力学复杂性给研究 TSase 催化的质子转移带来了困难,但我们能够通过实验提取两步反应的固有动力学同位素效应(KIE)。与氢化物转移相反,质子转移的固有 KIE 随温度变化。该结果在类似于马库斯的模型框架内进行了解释。这一解释表明,TSase 优化了较慢和整体限速的氢化物转移的供体-受体几何形状,但不是更快的质子转移。