Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
J Am Chem Soc. 2013 May 22;135(20):7583-92. doi: 10.1021/ja400761x. Epub 2013 May 10.
Thymidylate synthase (TSase) produces the sole intracellular de novo source of thymidine (i.e., the DNA base T) and thus is a common target for antibiotic and anticancer drugs. Mg(2+) has been reported to affect TSase activity, but the mechanism of this interaction has not been investigated. Here we show that Mg(2+) binds to the surface of Escherichia coli TSase and affects the kinetics of hydride transfer at the interior active site (16 Å away). Examination of the crystal structures identifies a Mg(2+) near the glutamyl moiety of the folate cofactor, providing the first structural evidence for Mg(2+) binding to TSase. The kinetics and NMR relaxation experiments suggest that the weak binding of Mg(2+) to the protein surface stabilizes the closed conformation of the ternary enzyme complex and reduces the entropy of activation on the hydride transfer step. Mg(2+) accelerates the hydride transfer by ~7-fold but does not affect the magnitude or temperature dependence of the intrinsic kinetic isotope effect. These results suggest that Mg(2+) facilitates the protein motions that bring the hydride donor and acceptor together, but it does not change the tunneling ready state of the hydride transfer. These findings highlight how variations in cellular Mg(2+) concentration can modulate enzyme activity through long-range interactions in the protein, rather than binding at the active site. The interaction of Mg(2+) with the glutamyl tail of the folate cofactor and nonconserved residues of bacterial TSase may assist in designing antifolates with polyglutamyl substitutes as species-specific antibiotic drugs.
胸苷酸合成酶(TSase)产生唯一的细胞内从头合成胸苷(即 DNA 碱基 T)的来源,因此是抗生素和抗癌药物的常见靶点。已有报道称 Mg(2+)会影响 TSase 的活性,但这种相互作用的机制尚未得到研究。本文展示了 Mg(2+)结合到大肠杆菌 TSase 的表面,并影响了内部活性位点(16 Å 远)处的氢转移动力学。晶体结构的检查确定了一个位于叶酸辅因子谷氨酸部分附近的 Mg(2+),这为 Mg(2+)结合到 TSase 的第一个结构证据。动力学和 NMR 弛豫实验表明,Mg(2+)与蛋白质表面的弱结合稳定了三元酶复合物的封闭构象,并降低了氢转移步骤的活化熵。Mg(2+)将氢转移加速约 7 倍,但不影响内在动力学同位素效应的幅度或温度依赖性。这些结果表明,Mg(2+)促进了将氢供体和受体结合在一起的蛋白质运动,但它不改变氢转移的隧道准备状态。这些发现强调了细胞内 Mg(2+)浓度的变化如何通过蛋白质中的远程相互作用来调节酶活性,而不是通过结合到活性位点来调节。Mg(2+)与叶酸辅因子的谷氨酸尾部和细菌 TSase 的非保守残基的相互作用可能有助于设计具有多谷氨酸取代物的抗叶酸作为具有物种特异性的抗生素药物。