基因编码的荧光/生物发光双模指示剂用于钙成像。

Genetically Encoded Fluorescence/Bioluminescence Bimodal Indicators for Ca Imaging.

机构信息

Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita 565-0871 , Japan.

Department of Biomolecular Science and Engineering, The Institute of Scientific and Industrial Research , Osaka University , 8-1 Mihogaoka , Ibaraki 567-0047 , Japan.

出版信息

ACS Sens. 2019 Jul 26;4(7):1825-1834. doi: 10.1021/acssensors.9b00531. Epub 2019 Jul 5.

Abstract

Fluorescent and bioluminescent genetically encoded Ca indicators (GECIs) are an indispensable tool for monitoring Ca dynamics in numerous cellular events. Although fluorescent GECIs have a high spatiotemporal resolution, their application is often confined to short-term imaging due to the external illumination that causes phototoxicity and autofluorescence from specimens. Bioluminescent GECIs overcome these pitfalls with enhanced compatibility to optogenetic manipulation and photophysiological processes; however, they are compromised for spatiotemporal resolution. Therefore, there has been a push toward the use of Ca indicators that possess the advantages of both fluorescent and bioluminescent GECI for a wide range of applications. To address this, we developed a high-affinity bimodal GECI, GLICO, using a single fluorescent protein-based GECI combined with a split luciferase. Through this novel design, the fusion protein becomes bimodal and possesses Ca sensing properties similar to those of its fluorescent ancestor and confers bioluminescence-based Ca imaging. GLICO in bioluminescence mode has the highest dynamic range (2200%) of all bioluminescent GECIs. We demonstrated the performance of GLICO in studying cytosolic Ca dynamics in different cultured cells in each mode. With the purpose of Ca imaging in high Ca content organelle, we also created a low-affinity variant, ReBLICO and performed Ca imaging of the ER in both fluorescence and bioluminescence modes. The ability to switch between fluorescence and bioluminescence modes with a single indicator would benefit transgenic applications by presenting an opportunity for a wide range of live Ca imaging in physiological and pathophysiological conditions.

摘要

荧光和生物发光基因编码钙指示剂(GECIs)是监测众多细胞事件中钙动力学的不可或缺的工具。尽管荧光 GECIs 具有高时空分辨率,但由于外部照明会引起光毒性和标本的自发荧光,因此其应用通常局限于短期成像。生物发光 GECIs 通过增强与光遗传学操作和光生理过程的兼容性克服了这些缺陷;然而,它们在时空分辨率方面存在妥协。因此,人们一直致力于使用兼具荧光和生物发光 GECI 优势的钙指示剂来满足广泛的应用需求。为了解决这个问题,我们使用单个荧光蛋白基 GECI 与分裂荧光素组合开发了一种高亲和力双模 GECI,即 GLICO。通过这种新颖的设计,融合蛋白成为双模,并具有类似于其荧光祖先的钙感应特性,并赋予基于生物发光的钙成像。在生物发光模式下,GLICO 具有所有生物发光 GECI 中最高的动态范围(2200%)。我们在每种模式下证明了 GLICO 在研究不同培养细胞中的细胞质钙动力学中的性能。为了在高钙细胞器中进行钙成像,我们还创建了一个低亲和力变体,ReBLICO,并在荧光和生物发光模式下对 ER 进行了钙成像。单个指示剂在荧光和生物发光模式之间切换的能力将通过为生理和病理生理条件下的广泛活钙成像提供机会,使转基因应用受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索