用于非侵入性高灵敏度高速生物发光成像的聚乙二醇化非ATP依赖型荧光素

PEGylated ATP-Independent Luciferins for Noninvasive High-Sensitivity High-Speed Bioluminescence Imaging.

作者信息

Tian Xiaodong, Zhang Yiyu, Ai Hui-Wang

机构信息

Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.

Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.

出版信息

ACS Chem Biol. 2025 Jan 17;20(1):128-136. doi: 10.1021/acschembio.4c00601. Epub 2024 Dec 23.

Abstract

Bioluminescence imaging (BLI) is a powerful, noninvasive imaging method for animal studies. NanoLuc luciferase and its derivatives are attractive bioluminescent reporters recognized for their efficient photon production and ATP independence. However, utilizing them for animal imaging poses notable challenges. Low substrate solubility has been a prominent problem, limiting brightness, while the susceptibility of luciferins to auto-oxidation by molecular oxygen in air increases handling complexity and poses an obstacle to obtaining consistent results. To address these issues, we developed a range of caged PEGylated luciferins with increased auto-oxidation resistance and water solubility of up to 25 mM, resulting in substantial bioluminescence increases in mouse models. This advancement has created the brightest and most sensitive luciferase-luciferin combination, enabling high-speed video-rate imaging of freely moving mice with brain-expressed luciferase. These innovative substrates offer new possibilities for investigating a wide range of biological processes and are poised to become invaluable resources for chemical, biological, and biomedical fields.

摘要

生物发光成像(BLI)是一种用于动物研究的强大的非侵入性成像方法。纳米荧光素酶及其衍生物是有吸引力的生物发光报告基因,因其高效的光子产生和不依赖ATP而受到认可。然而,将它们用于动物成像带来了显著挑战。底物溶解度低一直是一个突出问题,限制了亮度,而荧光素在空气中被分子氧自动氧化的敏感性增加了操作复杂性,并对获得一致的结果构成障碍。为了解决这些问题,我们开发了一系列具有更高抗自动氧化能力且水溶性高达25 mM的笼形聚乙二醇化荧光素,在小鼠模型中导致生物发光显著增加。这一进展创造了最亮且最灵敏的荧光素酶-荧光素组合,能够对表达脑荧光素酶的自由活动小鼠进行高速视频速率成像。这些创新的底物为研究广泛的生物过程提供了新的可能性,并有望成为化学、生物学和生物医学领域的宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeee/11744661/fc1055e11bff/cb4c00601_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索