Suppr超能文献

一种基于自动编码器和长短期记忆网络的交通流预测方法。

An AutoEncoder and LSTM-Based Traffic Flow Prediction Method.

作者信息

Wei Wangyang, Wu Honghai, Ma Huadong

机构信息

Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Information Engineering College, Henan University of Science and Technology, Luoyang 471023, China.

出版信息

Sensors (Basel). 2019 Jul 4;19(13):2946. doi: 10.3390/s19132946.

Abstract

Smart cities can effectively improve the quality of urban life. Intelligent Transportation System (ITS) is an important part of smart cities. The accurate and real-time prediction of traffic flow plays an important role in ITSs. To improve the prediction accuracy, we propose a novel traffic flow prediction method, called AutoEncoder Long Short-Term Memory (AE-LSTM) prediction method. In our method, the AutoEncoder is used to obtain the internal relationship of traffic flow by extracting the characteristics of upstream and downstream traffic flow data. Moreover, the Long Short-Term Memory (LSTM) network utilizes the acquired characteristic data and the historical data to predict complex linear traffic flow data. The experimental results show that the AE-LSTM method had higher prediction accuracy. Specifically, the Mean Relative Error (MRE) of the AE-LSTM was reduced by 0.01 compared with the previous prediction methods. In addition, AE-LSTM method also had good stability. For different stations and different dates, the prediction error and fluctuation of the AE-LSTM method was small. Furthermore, the average MRE of AE-LSTM prediction results was 0.06 for six different days.

摘要

智慧城市能够有效提升城市生活质量。智能交通系统(ITS)是智慧城市的重要组成部分。交通流量的准确实时预测在智能交通系统中起着重要作用。为提高预测精度,我们提出了一种新颖的交通流量预测方法,称为自动编码器长短期记忆(AE-LSTM)预测方法。在我们的方法中,自动编码器用于通过提取上下游交通流量数据的特征来获取交通流量的内部关系。此外,长短期记忆(LSTM)网络利用获取的特征数据和历史数据来预测复杂的线性交通流量数据。实验结果表明,AE-LSTM方法具有更高的预测精度。具体而言,与先前的预测方法相比,AE-LSTM的平均相对误差(MRE)降低了0.01。此外,AE-LSTM方法还具有良好的稳定性。对于不同的站点和不同的日期,AE-LSTM方法的预测误差和波动都很小。此外,AE-LSTM预测结果在六个不同日期的平均MRE为0.06。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5faa/6651253/fbb1ae06dd7f/sensors-19-02946-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验