Suppr超能文献

用于交通网络短期交通拥堵预测的深度自动编码器神经网络

Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks.

作者信息

Zhang Sen, Yao Yong, Hu Jie, Zhao Yong, Li Shaobo, Hu Jianjun

机构信息

Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610041, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2019 May 14;19(10):2229. doi: 10.3390/s19102229.

Abstract

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available online traffic service provider Washington State Department of Transportation. We then propose a deep autoencoder-based neural network model with symmetrical layers for the encoder and the decoder to learn temporal correlations of a transportation network and predicting traffic congestion. Our experimental results on the SATCS dataset show that the proposed DCPN model can efficiently and effectively learn temporal relationships of congestion levels of the transportation network for traffic congestion forecasting. Our method outperforms two other state-of-the-art neural network models in prediction performance, generalization capability, and computation efficiency.

摘要

交通拥堵预测对于实施智能交通系统以提高交通网络的效率和容量至关重要。然而,尽管其很重要,但与交通流预测相比,交通拥堵预测的研究严重不足,部分原因是严重缺乏大规模高质量的交通拥堵数据和先进算法。本文提出了一种可获取且通用的工作流程,用于获取大规模交通拥堵数据并基于图像分析创建交通拥堵数据集。通过此工作流程,我们基于来自公开在线交通服务提供商华盛顿州交通运输部的交通拥堵地图快照创建了一个名为西雅图地区交通拥堵状态(SATCS)的数据集。然后,我们提出了一种基于深度自动编码器的神经网络模型,其编码器和解码器具有对称层,以学习交通网络的时间相关性并预测交通拥堵。我们在SATCS数据集上的实验结果表明,所提出的DCPN模型能够高效且有效地学习交通网络拥堵水平的时间关系以进行交通拥堵预测。我们的方法在预测性能、泛化能力和计算效率方面优于其他两种最先进的神经网络模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef3f/6567350/c54c001185e9/sensors-19-02229-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验