Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.
Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
Genetics. 2019 Sep;213(1):127-141. doi: 10.1534/genetics.119.302256. Epub 2019 Jul 5.
The fission yeast is a powerful genetic model system for uncovering fundamental principles of heterochromatin assembly and epigenetic inheritance of chromatin states. Heterochromatin defined by histone H3 lysine 9 methylation and HP1 proteins coats large chromosomal domains at centromeres, telomeres, and the mating-type () locus. Although genetic and biochemical studies have provided valuable insights into heterochromatin assembly, many key mechanistic details remain unclear. Here, we use a sensitized reporter system at the locus to screen for factors affecting heterochromatic silencing. In addition to known components of heterochromatin assembly pathways, our screen identified eight new factors including the cohesin-associated protein Pds5. We find that Pds5 enriched throughout heterochromatin domains is required for proper maintenance of heterochromatin. This function of Pds5 requires its associated Eso1 acetyltransferase, which is implicated in the acetylation of cohesin. Indeed, introducing an acetylation-mimicking mutation in a cohesin subunit suppresses defects in heterochromatin assembly in ∆ and ∆ cells. Our results show that in cells lacking Pds5, cohesin interferes with heterochromatin assembly. Supporting this, eliminating cohesin from the locus in the ∆ mutant restores both heterochromatin assembly and gene silencing. These analyses highlight an unexpected requirement for Pds5 in ensuring proper coordination between cohesin and heterochromatin factors to effectively maintain gene silencing.
裂殖酵母是一个强大的遗传模型系统,可用于揭示异染色质组装和染色质状态的表观遗传遗传的基本原理。由组蛋白 H3 赖氨酸 9 甲基化和 HP1 蛋白定义的异染色质覆盖着着丝粒、端粒和交配型()位点的大染色体域。尽管遗传和生化研究为异染色质组装提供了有价值的见解,但许多关键的机制细节仍不清楚。在这里,我们使用在 位点的敏感报告系统筛选影响异染色质沉默的因素。除了异染色质组装途径的已知成分外,我们的筛选还鉴定了八个新的因素,包括着丝粒相关蛋白 Pds5。我们发现,Pds5 在整个异染色质域中富集对于异染色质的正确维持是必需的。Pds5 的这一功能需要其相关的 Eso1 乙酰转移酶,该酶与着丝粒的乙酰化有关。事实上,在一个着丝粒亚基中引入一个乙酰化模拟突变可以抑制和细胞中异染色质组装的缺陷。我们的结果表明,在缺乏 Pds5 的细胞中,着丝粒会干扰异染色质组装。支持这一点,在 ∆ 突变体中从 位点消除着丝粒可以恢复异染色质组装和基因沉默。这些分析强调了 Pds5 在确保着丝粒和异染色质因子之间的适当协调以有效维持基因沉默方面的意外需求。