Suppr超能文献

个体和周期性雌激素谱在女性中的表现:数据的结构和可变性。

Individual and cyclic estrogenic profile in women: Structure and variability of the data.

机构信息

Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Torino, Italy.

Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Torino, Italy; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", regione Gonzole 10/1, 10043 Orbassano, TO, Italy.

出版信息

Steroids. 2019 Oct;150:108432. doi: 10.1016/j.steroids.2019.108432. Epub 2019 Jul 4.

Abstract

The concentration of estrogens in the body fluids of women is highly variable, due to the menstrual cycle, circadian oscillations, and other physiological and pathological causes. To date, only the cyclic fluctuations of the principal estrogens (estradiol and estrone) have been studied, with limited outcome of general significance. Aim of the present study was to examine in detail the cyclic variability of a wide estrogens' panel and to interpret it by multivariate statistics. Four estrogens (17α-estradiol, 17β-estradiol, estrone, estriol) and eleven of their metabolites (4-methoxyestrone, 2-methoxyestrone, 16α-hydroxyestrone, 4-hydroxyestrone, 2-hydroxyestrone, 4-methoxyestradiol, 2-methoxyestradiol, 4-hydroxyestradiol, 2-hydroxyestradiol, estriol, 16-epiestriol, and 17-epiestriol) were determined in urine by a gas chromatography - mass spectrometry method, which was developed by design of experiments and fully validated according to ISO 17025 requirements. Then, urine samples collected every morning for a complete menstrual cycle from 9 female volunteers aged 24-35 years (1 parous) were analysed. The resulting three-dimensional data (subjects × days × estrogens) were interpreted using several statistical tools. Parallel Factor Analysis compared the estrogen profiles in order to explore the cyclic and inter-individual variability of each analyte. Principal Component Analysis (PCA) provided clear separation of the sampling days along the cycle, allowing discrimination among the luteal, ovulation, and follicular phases. The scores obtained from PCA were used to build a Linear Discriminant Analysis classification model which enhanced the recognition of the three cycle's phases, yielding an overall classification non-error rate equal to 90%. These statistical models may find prospective application in fertility studies and the investigation of endocrinology disorders and other hormone-dependent diseases.

摘要

女性体液中的雌激素浓度变化很大,这是由于月经周期、昼夜节律波动以及其他生理和病理原因造成的。迄今为止,仅研究了主要雌激素(雌二醇和雌酮)的周期性波动,但结果普遍意义有限。本研究的目的是详细检查广泛的雌激素谱的周期性变化,并通过多变量统计进行解释。采用气相色谱-质谱法(该方法是通过实验设计开发的,并根据 ISO 17025 要求进行了全面验证)检测尿液中的 4 种雌激素(17α-雌二醇、17β-雌二醇、雌酮、雌三醇)和 11 种代谢物(4-甲氧基雌酮、2-甲氧基雌酮、16α-羟雌酮、4-羟基雌酮、2-羟基雌酮、4-甲氧基雌二醇、2-甲氧基雌二醇、4-羟基雌二醇、2-羟基雌二醇、雌三醇、16-表雌三醇、17-表雌三醇)。然后,分析了 9 名 24-35 岁(1 名经产妇)的女性志愿者在整个月经周期内每天早上收集的尿液样本。使用几种统计工具对生成的三维数据(个体×天数×雌激素)进行了分析。平行因子分析比较了雌激素谱,以探讨每种分析物的周期性和个体间变异性。主成分分析(PCA)沿周期清楚地分离了采样天数,从而可以区分黄体期、排卵和卵泡期。从 PCA 获得的分数用于构建线性判别分析分类模型,该模型增强了对三个周期阶段的识别,总分类无错误率等于 90%。这些统计模型可能会在生育力研究以及内分泌紊乱和其他激素依赖性疾病的研究中得到应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验