Suppr超能文献

锂离子电池阴极材料第一性原理计算研究的最新进展。

Recent advances in first principles computational research of cathode materials for lithium-ion batteries.

机构信息

Department of NanoEngineering, University of California San Diego , La Jolla, California 92109, United States.

出版信息

Acc Chem Res. 2013 May 21;46(5):1171-80. doi: 10.1021/ar2002396. Epub 2012 Apr 10.

Abstract

To meet the increasing demands of energy storage, particularly for transportation applications such as plug-in hybrid electric vehicles, researchers will need to develop improved lithium-ion battery electrode materials that exhibit high energy density, high power, better safety, and longer cycle life. The acceleration of materials discovery, synthesis, and optimization will benefit from the combination of both experimental and computational methods. First principles (ab Initio) computational methods have been widely used in materials science and can play an important role in accelerating the development and optimization of new energy storage materials. These methods can prescreen previously unknown compounds and can explain complex phenomena observed with these compounds. Intercalation compounds, where Li(+) ions insert into the host structure without causing significant rearrangement of the original structure, have served as the workhorse for lithium ion rechargeable battery electrodes. Intercalation compounds will also facilitate the development of new battery chemistries such as sodium-ion batteries. During the electrochemical discharge reaction process, the intercalating species travel from the negative to the positive electrode, driving the transition metal ion in the positive electrode to a lower oxidation state, which delivers useful current. Many materials properties change as a function of the intercalating species concentrations (at different state of charge). Therefore, researchers will need to understand and control these dynamic changes to optimize the electrochemical performance of the cell. In this Account, we focus on first-principles computational investigations toward understanding, controlling, and improving the intrinsic properties of five well known high energy density Li intercalation electrode materials: layered oxides (LiMO2), spinel oxides (LiM2O4), olivine phosphates (LiMPO4), silicates-Li2MSiO4, and the tavorite-LiM(XO4)F (M = 3d transition metal elements). For these five classes of materials, we describe the crystal structures, the redox potentials, the ion mobilities, the possible phase transformation mechanisms, and structural stability changes, and the relevance of these properties to the development of high-energy, high-power, low-cost electrochemical systems. These results demonstrate the importance of computational tools in real-world materials development, to optimize or minimize experimental synthesis and testing, and to predict a material's performance under diverse conditions.

摘要

为满足储能不断增长的需求,特别是在插电式混合动力电动汽车等交通应用领域,研究人员将需要开发出表现出高能量密度、高功率、更好的安全性和更长循环寿命的改良锂离子电池电极材料。通过将实验和计算方法相结合,将加速材料发现、合成和优化。第一性原理(从头算)计算方法已在材料科学中得到广泛应用,并可以在加速新能源存储材料的开发和优化方面发挥重要作用。这些方法可以预先筛选以前未知的化合物,并可以解释用这些化合物观察到的复杂现象。插层化合物中,Li(+)离子插入宿主结构而不会引起原始结构的显著重排,一直是锂离子可再充电电池电极的主力。插层化合物也将促进钠离子电池等新型电池化学的发展。在电化学放电反应过程中,插层物质从负极迁移到正极,使正极中的过渡金属离子价态降低,从而提供有用的电流。许多材料性能随插层物质浓度(不同的荷电状态)而变化。因此,研究人员需要了解并控制这些动态变化,以优化电池的电化学性能。在本报告中,我们重点介绍了通过第一性原理计算研究来理解、控制和改善五种知名高能量密度 Li 插层电极材料的固有性质:层状氧化物(LiMO2)、尖晶石氧化物(LiM2O4)、橄榄石磷酸盐(LiMPO4)、硅酸盐-Li2MSiO4 和 tavorite-LiM(XO4)F(M = 3d 过渡金属元素)。对于这五类材料,我们描述了晶体结构、氧化还原电位、离子迁移率、可能的相变机制以及结构稳定性变化,以及这些性质与开发高能、高功率、低成本电化学系统的相关性。这些结果表明计算工具在实际材料开发中的重要性,可优化或最小化实验合成和测试,并预测材料在不同条件下的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验