Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany.
Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, United States.
Front Immunol. 2019 Jun 20;10:1420. doi: 10.3389/fimmu.2019.01420. eCollection 2019.
Inflammatory bowel diseases (IBD) are associated with compositional and functional changes of the intestinal microbiota, but specific contributions of individual bacteria to chronic intestinal inflammation remain unclear. is a resident member of the human intestinal core microbiota that has been linked to the pathogenesis of IBD and induces chronic colitis in susceptible monoassociated IL-10-deficient (IL-10) mice. In this study, we characterized the colitogenic activity of as part of a simplified human microbial consortium based on seven enteric bacterial strains (SIHUMI). RNA sequencing analysis of isolated from monoassociated wild type and IL-10 mice identified 408 genes including 14 genes of the ethanolamine utilization () locus that were significantly up-regulated in response to inflammation. Despite considerable up-regulation of genes, deletion of ethanolamine utilization (Δ) had no impact on colitogenic activity in monoassociated IL-10 mice. However, replacement of the wild type bacteria by a Δ mutant in SIHUMI-colonized IL-10 mice resulted in exacerbated colitis, suggesting protective functions of ethanolamine utilization in complex bacterial communities. To better understand gene response in the presence of other microbes, we purified wild type cells from the colon content of SIHUMI-colonized wild type and IL-10 mice using immuno-magnetic separation and performed RNA sequencing. Transcriptional profiling revealed that the bacterial environment reprograms gene expression in response to inflammation, with the majority of differentially expressed genes not being shared between monocolonized and SIHUMI conditions. While in monoassociation a general bacterial stress response could be observed, expression of genes in SIHUMI-colonized mice was characterized by up-regulation of genes involved in growth and replication. Interestingly, in mice colonized with SIHUMI lacking enhanced inflammation was observed in comparison to SIHUMI-colonized mice, supporting the hypothesis that ethanolamine metabolism protects against colitis in complex consortia. In conclusion, this study demonstrates that complex bacterial consortia interactions reprogram the gene expression profile and colitogenic activity of the opportunistic pathogen toward a protective function.
炎症性肠病(IBD)与肠道微生物群落的组成和功能变化有关,但特定细菌对慢性肠道炎症的具体贡献尚不清楚。是人类肠道核心微生物群落的常驻成员,与 IBD 的发病机制有关,并在易感性单关联 IL-10 缺陷(IL-10)小鼠中诱导慢性结肠炎。在这项研究中,我们将作为基于 7 种肠细菌株(SIHUMI)的简化人类微生物联合体的一部分,对 的结肠炎发病活性进行了表征。从单关联野生型和 IL-10 小鼠中分离出的 进行 RNA 测序分析,确定了 408 个基因,包括 14 个乙醇胺利用()基因座的基因,这些基因在炎症反应中显著上调。尽管 基因的上调幅度很大,但在单关联 IL-10 小鼠中,乙醇胺利用(Δ)的缺失对 的结肠炎发病活性没有影响。然而,在 SIHUMI 定植的 IL-10 小鼠中,用 Δ 突变体替代野生型 细菌会导致结肠炎加剧,这表明在复杂的细菌群落中, 乙醇胺利用具有保护作用。为了更好地理解其他微生物存在时 的基因反应,我们使用免疫磁分离从 SIHUMI 定植的野生型和 IL-10 小鼠的结肠内容物中纯化了野生型 细胞,并进行了 RNA 测序。转录谱分析表明,细菌环境会根据炎症情况重新编程 的基因表达,大多数差异表达的基因在单定植和 SIHUMI 条件之间并不共享。虽然在单定植中可以观察到一般的细菌应激反应,但 SIHUMI 定植小鼠中 基因的表达特征是与生长和复制相关的基因上调。有趣的是,在缺乏 的 SIHUMI 定植小鼠中观察到增强的炎症,与 SIHUMI 定植小鼠相比,这支持了 乙醇胺代谢在复杂联合体中预防结肠炎的假说。总之,这项研究表明,复杂的细菌联合体相互作用会重新编程机会性病原体 的基因表达谱和结肠炎发病活性,使其具有保护功能。